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SUMMARY
The calculation of derivatives of the likelihood function for animal models without the need for large matrix
inversion is described. Their use in estimating covariance components is illustrated giving examples of analyses
beef cattle data.

INTRODUCTION

Estimation of covariance components by Restricted Maximum Likelihood (REML) fitting an animal model is
widely carried out using a derivative-free (DF) algorithm to locate the maximum of the likelihood function. While
such algorithms have proven robust and easy to use, they are generally slow to converge, often requiring me
likelihood evaluations, in particular for multivariate analyses fitting several random factors. As outlined byebraser
al. (1987), however, they only require factorization of a large matrix rather than its inverse and can be implemente
efficiently using sparse matrix techniques for analyses involving tens of thousands of animals.

Although there has been some use of algorithms using derivatives of the likelihood function, i.e. Expectatior
Maximization type or even Method of Scoring procedures, for large scale animal model analyses, they have involv
the use of a supercomputer or some approximation of the inverse of the coefficient matrix required (Ducrocq, 19¢
Misztal, 1990; Misztakt al,, 1992). This paper describes the calculation of first and second derivatives of the REML
(log) likelihood (logL) using a simple extension of the large matrix factorization required to evaludtgfioiga DF
algorithm) only, and illustrates their use in estimating covariance components using a Newton-Raphson algorithn

DERIVATIVES OF THE LIKELIHOOD
Consider the linear mixed model
y=Xb+Zu+e (1)

with y, b, u ande denoting the vector of observations, fixed effects, random effects and residual errors, respectivel
andX andZ the incidence matrices pertaining boandu. LetV(u) =G, V(e) = R andCoVu,€) = 0, so that
V(y) =V =ZGZ’ +R. The mixed model matrix pertaining to (1) is

X'R7IX X'R7z X'R™1y C ot

M=|ZRIX ZRz+G?t ZR Yy |=| 7 5.1 (2)
n-1 p-1 p-1 r yR™y
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whereC is the coefficient matrix andis the vector of right hand sides in the mixed model equations.
For a multivariate normal distributiog,~ N(Xb,V),

logL = —% [const+ log|V|+log|X*'V~IX*| 4 (y — Xb)'V~1(y — XB)} (3)
(e.g. Harville 1977), withX* a full-rank submatrix oK. Alternatively (Graseet al., 1987; Meyer, 1989),

logL = —% [const+ log|R| + log|G| +log|C| + y'Py] 4)
with P =V~ - V-IX(X'VIX) X'V~ = V=1 - v=Ix*(X*V 1)~ Ix+y -1,

Let 6= {6;} denote the vector of parameters to be estimatediwth, ..., p. Consider a parameterization where
Vislinearin®,i.e.V = zf’zleiaV/aei. Differentiating (4) gives

olog ~ 1folog|R|  dlog|G|  dlog|C|  dy'Py
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Calculating log|C| and y'Py and their derivatives

Grasert al. (1987) showed how lo§| andy’Py can be evaluated in a general way for all models of form (1) by
factoringM. An alternative to the series of Gaussian Elimination steps they suggested, is a Cholesky decompositic
LetL with elements;; (I;; = 0 for j > i) denote the Cholesky factor M, i.e.M =LL". Hence,

M-1
log|C| =2 % logl (7)
k=1

with M denoting the size df1, and noting thay'Py = |[M|/|C| (Smith, 1993)

y'Py =1 (8)

Smith (1993) describes a general algorithm which allows the derivatives of the Cholesky factor of a matrix to b
evaluated while carrying out the factorization, provided the derivatives of the original matrix are specified. Differen
tiating (7) and (8) then gives the derivatives of |&j andy’Py as simple functions of the diagonal elements of the
Cholesky matrix and its derivatives.
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Calculating log|R| and its derivatives

Considentraits and leE with elements; (i < j =1,...,q) be the symmetric matrix of residual covariances. For
y ordered according to traits within animals and zero error covariances between measurements on different anim
R is blockdiagonal with submatricés,, for thei—th animal with combination of traite. This gives (Meyer, 1991)

W
log|R| = 5 Nulog|Euw| (13)
w=1

whereN,, is the number of animals having records for combination of trajtendW the number of different
combinations of traits measured. Analogously, derivatives ofRogan be obtained from derlvatlves of matrices
Ew. Let€’ denote thes-th element o, and definedD® = oE,,/06;. For6; = g ande; =

dlogR| ¢ e e |

06; - WZlNW”(EwlDW) = Z '\I\N(Z_ékl)e\l;v (14)
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wheredys is Kronecker's Delta, i.eds = 1 forr = sand zero otherwise, while all other derivatives of [Bgare
zero. Forg = 1 andR = ¢Zl, (14) and (15) reduce tdog? and Nog?, respectively.

Calculating log|G| and its derivatives



Terms arising from the covariance matrix of random effe@s,can often be determined in a similar way,
exploiting the structure o6 (Meyer, 1989, 1991). Defin€ = {t;;} of sizerq x rq as the matrix of covariances
between the random effects fitted. Lat consist of a vector afNa animal genetic effects, and some uncorrelated
additional random effect, with Nc levels per trait, i.eu’ = (&'c’) . Partitiodl correspondingly, and lek denote
the numerator relationship between animals, Bridkscribe the correlation structure amongst the levets dhis
gives

G = Diag{A x Ta;B x Tc} (16)
log|G| = Nalog|Ta|+Nclog|Tc|+q(log|A|+log|B]) (17)
dlog|G . _
a%- _ Natr (TA*DJ) + Netr (T D) (18)
|
2
07log|G| a';gf' = Natr (TRIDETAIDY) + Netr (TS DTS IDY) (19)
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with D% =0Ta/06; andDgi = 0T /06;. Further simplifications analogous to (14) and (15) can be derived; e.g. for
G = 03A, (18) and (19) reduce a0, 2 and Nao,*, respectively.

Derivatives of the mixed model matrix
Fortunately, derivatives d¥l have the same structure lslsand can be evaluated while setting Mp replacing
G andR by their derivatives. Fo; and®; equal to residual (co)variances, the derivativeMadire of form

X'QrX X'QrZ X'Qry
Z/QRX Z/QRZ Z/QRy (20)
YQrX Y'QrZ Y'Qry

with
N 4+ 116 -1
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and
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for first and second derivatives, respectively, apdienoting the combination of traits for tle-th animal andy *
the direct matrix sum. FdR = qél and; = 0 = 0%, Qr, = —og“l andQg, = 0'E6|. Analogously, forg; and6;
equal to elements of andG as in (16), derivatives dl are of form

0 0 O
0 Qz O (23)
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Again, further simplifications are feasible for specific casesgrefl, G = 0ZA andd; = 8; = 03, Qg, = —0,*A~!
andQg, = 0,°A L.



IMPLEMENTATION

Variance components were estimated using a Newton-Raphson (NR) type algorithm. The NR is an unconstrair
optimization procedure. REML, however, requires estimates to be within the permissible parameter space. Stand
procedures to impose constraints are available but may increase the number of computationally expensive funct
evaluations required considerably. Asahhocalternative, the Hessian matrix was modified whenever estimates out
of bounds occurred, making it more diagonally dominant by multiplying its diagonals with a factor, increasing suc
cessively until the resulting estimates of covariance matrices were (semi-) positive definite. This made the resulti
estimation step more akin to a Method of Steepest Descent step; seeebehi(£992) for further discussion.

Calculation of lod- and its derivatives was implemented using a compressed sparse matrix storage scheme
described by George and Liu (1981) and their/fRAN routines GENQMD and SMBFCT to obtain a minimum
degree ordering d1 and its symbolic factorization. Fqr parameters, this requiredtlp(p+ 3)/2 times as much
space as evaluation of lagonly.

EXAMPLES

Characteristics of three data sets and the computational requirements for four analyses using both a NR :
a DF algorithm (with the same starting values) are summarized in Table 1. The NR algorithm was considered
have converged when the norm of the vector of first derivatives df legs less than 1@ or when the likelihood
remained constant to the sixth decimal. The DF analyses used Nelder and Mead's (1965) Simplex procedure to loc
the maximum of the likelihood, with a step size of 20% of the starting values given to set up the initial simplex an
imposing a value of 10® for the variance of function values in the simplex as convergence criterion.

For univariate analyses, starting values given were genetic parameters, i.e. heritabilities etc., and one DF
valuation of lod- was carried out for the NR algorithm to obtain an initial estimate of the error variance, deriving
starting values for the other components from it. Preliminary studies had shown the NR algorithm to be sensitiy
against poor starting values and this strategy to improve convergence, in particular to reduce the incidence of n
permissible estimates in the first iterate markedly. For both models of analysis and starting values close to (‘goot
and very different to (‘bad’) the eventual estimates, the NR converged in 5 or 6 iterates. Evaluating 4 first and 1
second partial derivatives of lagin the second analysis required about 26 times as long as evaluatingidyg
Smith (1993) estimated that each first derivativé akquired twice and each second derivative required four times
the work to calculaté. only, but that using sparse matrix techniques no more than 2—4 times the work would be
required for both. However, with only few parameters to be estimated, the NR required considerably longer thg
the DF algorithm in all four univariate examples shown, even for a relatively detailed model fitting both genetic an
permanent environmental effects which are expected to have high negative sampling correlations.

Multivariate analyses were carried out considering all parameters and maximizing with respect to the covarianc
only initially. For this, variances were fixed to their univariate estimates, for 2 iterates for the NR algorithm and unti
the variance of function values was less than“fr the DF algorithm. For DF analyses, this yielded considerable
savings in the number of Idgto be evaluated, in particular for a trivariate analysis. Again, on average about twice
the time required to determine lagwas needed for each derivative evaluated. With a high dimension of search
(9 and 12, respectively, for the bi- and trivariate analysis), the number of function evaluations required for the D
algorithm was large, so that the NR algorithm proved advantageous, requiring less than half of the time needed
the former.

CONCLUSIONS

Evaluation of first and second partial derivatives of the REML likelihood models is feasible for large scale anima
model analyses. Timewise, only about twice the amount required far dody is required per derivative, though
additional space needed to store all derivativelglair its Cholesky factor may be considerable. For few parameters
to be estimated, there appears to be no advantage in using a NR algorithm over a DF algorithm, though the forn
will yield an estimate of the covariance matrix of estimates as a by-product. For multivariate analyses, use of i
NR algorithm may reduce computational requirements dramatically compared to a DF approach.

However, preliminary experience with the NR algorithm has shown it be markedly less robust than the DF
being sensitive to poor starting values. Furthermore, it is not as easy to constrain estimates to the parameter sp
Further research is required to establish optimal use of information from derivatives in locating the maximum of th
likelihood, especially when searching at the bounds of the parameter space. Only the use of both first and sec



Table 1: Examples for Newton-Raphson (NR) versus Derivative-Free (DF) REML

Breed Hereford Hereford Wokalup Zebu Cross
Goo®* Bad® Good Bad AP SuP Al  Sub

Traits(sy WWwW Ww CB, HH WW, YW, FW

Effects fitted a am,c a,c a

Parameters estimated 03,02 0%,0%,02,0¢  Oa;,0c;,OF; Op;; OF;

No. of parameters 2 4 9 12

No. of records 3088 3088 2664 2988

No. of animals 3331 3426 2369 1430

No. of rows inM 3535 8012 6193 4342

No. elements iMf 100,151 308,060 258,764 135,175

NR No. iterates 5 6 5 5 5 6 12 11
timel/iterate [secs] | 28.1 28.1 2855 2855 371.0 3710 974 97/4
total time [secs] 143 172 1438 1438 1855 2226 1169 1071

DF No. logL evaluated| 15 23 54 86 699 648 2939 1434
time/logL [secs] 2.9 29 107 107 7.1 7.1 2.0 2.0
total time [secs] 44 67 578 920 4963 4620 5878 2868

aUnivariate analyses for ‘good’ and ‘bad’ starting values

PMultivariate analyses maximizing w.r.t. all parameters and a subset (covariances only) first

SWW : Weaning weight, YW : yearling weight, FW : Final weight, CB : Cannon bone length, HH : Hip height

da: direct additive genetian : maternal genetia; : permanent environmental maternal

eO'A” : direct additive genetiayy,; : maternal genetiayg; : permanent environmental maternal, argj : residual (co)variances
flLower triangle only

derivatives has been considered here; the methodology presented, however, puts a whole host of other optimiza
techniques within our reach; in particular, procedures using first derivatives only (and possibly approximating secol
derivatives) need to be investigated.
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