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SUMMARY
The calculation of derivatives of the likelihood function for animal models without the need for large matrix

inversion is described. Their use in estimating covariance components is illustrated giving examples of analyses of
beef cattle data.

INTRODUCTION
Estimation of covariance components by Restricted Maximum Likelihood (REML) fitting an animal model is

widely carried out using a derivative-free (DF) algorithm to locate the maximum of the likelihood function. While
such algorithms have proven robust and easy to use, they are generally slow to converge, often requiring many
likelihood evaluations, in particular for multivariate analyses fitting several random factors. As outlined by Graseret
al. (1987), however, they only require factorization of a large matrix rather than its inverse and can be implemented
efficiently using sparse matrix techniques for analyses involving tens of thousands of animals.

Although there has been some use of algorithms using derivatives of the likelihood function, i.e. Expectation-
Maximization type or even Method of Scoring procedures, for large scale animal model analyses, they have involved
the use of a supercomputer or some approximation of the inverse of the coefficient matrix required (Ducrocq, 1993;
Misztal, 1990; Misztalet al., 1992). This paper describes the calculation of first and second derivatives of the REML
(log) likelihood (logL) using a simple extension of the large matrix factorization required to evaluate logL (for a DF
algorithm) only, and illustrates their use in estimating covariance components using a Newton-Raphson algorithm.

DERIVATIVES OF THE LIKELIHOOD
Consider the linear mixed model

y = Xb +Zu +e (1)

with y, b, u andedenoting the vector of observations, fixed effects, random effects and residual errors, respectively,
andX andZ the incidence matrices pertaining tob andu. Let V(u) = G, V(e) = R andCov(u,e′) = 0, so that
V(y) = V = ZGZ ′+R. The mixed model matrix pertaining to (1) is

M =

 X′R−1X X ′R−1Z X ′R−1y
Z′R−1X Z ′R−1Z +G−1 Z′R−1y
y′R−1X y′R−1Z y′R−1y

=
[

C r
r ′ y′R−1y

]
(2)

whereC is the coefficient matrix andr is the vector of right hand sides in the mixed model equations.
For a multivariate normal distribution,y∼ N(Xb,V),

logL =−1
2

[
const+ log|V|+ log|X∗′V−1X∗|+(y−Xb̂)′V−1(y−Xb̂)

]
(3)

(e.g. Harville 1977), withX∗ a full-rank submatrix ofX. Alternatively (Graseret al., 1987; Meyer, 1989),

logL =−1
2

[
const+ log|R|+ log|G|+ log|C|+y′Py

]
(4)

with P = V−1−V−1X(X′V−1X)−X′V−1 = V−1−V−1X∗(X∗′V−1X∗)−1X∗′V−1.
Let θ= {θi} denote the vector of parameters to be estimated withi = 1, . . . , p. Consider a parameterization where

V is linear inθ, i.e. V = ∑p
i=1 θi∂V/∂θi . Differentiating (4) gives

∂logL
∂θi

= −1
2

[
∂ log|R|

∂θi
+

∂ log|G|
∂θi

+
∂ log|C|

∂θi
+

∂y′Py
∂θi

]
(5)

∂2logL
∂θi∂θ j

= −1
2

[
∂2 log|R|

∂θi∂θ j
+

∂2 log|G|
∂θi∂θ j

+
∂2 log|C|

∂θi∂θ j
+

∂2y′Py
∂θi∂θ j

]
(6)



Calculating log|C| and y′Py and their derivatives

Graseret al.(1987) showed how log|C| andy′Py can be evaluated in a general way for all models of form (1) by
factoringM . An alternative to the series of Gaussian Elimination steps they suggested, is a Cholesky decomposition.
Let L with elementsl i j (l i j = 0 for j > i) denote the Cholesky factor ofM , i.e.M = LL ′. Hence,

log|C| = 2
M−1

∑
k=1

loglkk (7)

with M denoting the size ofM , and noting thaty′Py = |M |/|C| (Smith, 1993)

y′Py = l2
MM (8)

Smith (1993) describes a general algorithm which allows the derivatives of the Cholesky factor of a matrix to be
evaluated while carrying out the factorization, provided the derivatives of the original matrix are specified. Differen-
tiating (7) and (8) then gives the derivatives of log|C| andy′Py as simple functions of the diagonal elements of the
Cholesky matrix and its derivatives.

∂ log|C|
∂θi

= 2
M−1

∑
k=1

l−1
kk

∂lkk

∂θi
(9)

∂2 log|C|
∂θi∂θ j

= 2
M−1

∑
k=1

l−1
kk

∂2lkk

∂θi∂θ j
− l−2

kk
∂lkk

∂θi

∂lkk

∂θ j
(10)

∂y′Py
∂θi

= 2lMM
∂lMM

∂θi
(11)

∂2y′Py
∂θi∂θ j

= 2

(
lMM

∂2lMM

∂θi∂θ j
+

∂lMM

∂θi

∂lMM

∂θ j

)
(12)

Calculating log|R| and its derivatives

Considerq traits and letE with elementsei j (i≤ j = 1, ...,q) be the symmetric matrix of residual covariances. For
y ordered according to traits within animals and zero error covariances between measurements on different animals,
R is blockdiagonal with submatricesEw for the i−th animal with combination of traitsw. This gives (Meyer, 1991)

log|R|=
W

∑
w=1

Nw log|Ew| (13)

whereNw is the number of animals having records for combination of traitsw, andW the number of different
combinations of traits measured. Analogously, derivatives of log|R| can be obtained from derivatives of matrices
Ew. Let ers

w denote thers-th element ofE−1
w , and defineDθi

w = ∂Ew/∂θi . Forθi = ekl andθ j = emn

∂ log|R|
∂θi

=
W

∑
w=1

Nwtr(E−1
w Dθi

w) =
W

∑
w=1

Nw(2−δkl)ekl
w (14)

∂2 log|R|
∂θi∂θ j

=
W

∑
w=1

Nwtr(E−1
w Dθi

wE−1
w Dθ j

w ) =
W

∑
w=1

Nw(2−δkl)(2−δmn)(ekm
w eln

w +elm
w ekn

w ) (15)

whereδrs is Kronecker’s Delta, i.e.δrs = 1 for r = s and zero otherwise, while all other derivatives of log|R| are
zero. Forq = 1 andR = σ2

EI , (14) and (15) reduce toNσ−2
E and 2Nσ−4

E , respectively.

Calculating log|G| and its derivatives



Terms arising from the covariance matrix of random effects,G, can often be determined in a similar way,
exploiting the structure ofG (Meyer, 1989, 1991). DefineT = {ti j} of size rq× rq as the matrix of covariances
between ther random effects fitted. Letu consist of a vector ofqNA animal genetic effects,a, and some uncorrelated
additional random effect,c, with NC levels per trait, i.e.u′ = (a′c′) . PartitionT correspondingly, and letA denote
the numerator relationship between animals, andB describe the correlation structure amongst the levels ofc. This
gives

G = Diag{A×TA;B×TC} (16)

log|G|= NA log|TA |+NC log|TC|+q(log|A|+ log|B|) (17)

∂ log|G|
∂θi

= NAtr(T−1
A Dθi

A )+NCtr(T−1
C Dθi

C ) (18)

∂2 log|G|
∂θi∂θ j

= NAtr(T−1
A Dθi

A T−1
A Dθ j

A )+NCtr(T−1
C Dθi

C T−1
C Dθ j

C ) (19)

with Dθi
A = ∂TA/∂θi andDθi

C = ∂TC/∂θi . Further simplifications analogous to (14) and (15) can be derived; e.g. for
G = σ2

AA, (18) and (19) reduce toNAσ−2
A and 2NAσ−4

A , respectively.

Derivatives of the mixed model matrix
Fortunately, derivatives ofM have the same structure asM and can be evaluated while setting upM , replacing

G andR by their derivatives. Forθi andθ j equal to residual (co)variances, the derivatives ofM are of form X′QRX X ′QRZ X ′QRy
Z′QRX Z ′QRZ Z ′QRy
y′QRX y′QRZ y′QRy

 (20)

with

QR1 =−
N

∑
k=1

+ E−1
wk

Dθi
wk

E−1
wk

(21)

and

QR2 =
N

∑
k=1

+ E−1
wk

Dθi
wk

E−1
wk

Dθ j
wkE

−1
wk

+E−1
wk

Dθ j
wkE

−1
wk

Dθi
wk

E−1
wk

(22)

for first and second derivatives, respectively, andwk denoting the combination of traits for thek−th animal and∑+

the direct matrix sum. ForR = σ2
EI andθi = θ j = σ2

E, QR1 = −σ−4
E I andQR2 = σ−6

E I . Analogously, forθi andθ j
equal to elements ofT andG as in (16), derivatives ofM are of form 0 0 0

0 QG 0
0 0 0

 (23)

with

QG1 =
[
−T−1

A Dθi
A T−1

A ×A−1 0
0 −T−1

C Dθi
C T−1

C ×B−1

]
(24)

andQG2 =[
T−1

A (Dθi
A T−1

A Dθ j

A +Dθ j

A T−1
A Dθi

A )T−1
A ×A−1 0

0 T−1
C (Dθi

C T−1
C Dθ j

C +Dθ j

C T−1
C Dθi

C )T−1
C ×B−1

]
(25)

Again, further simplifications are feasible for specific cases. Forq= 1,G = σ2
AA andθi = θ j = σ2

A, QG1 =−σ−4
A A−1

andQG2 = σ−6
A A−1.



IMPLEMENTATION
Variance components were estimated using a Newton-Raphson (NR) type algorithm. The NR is an unconstrained

optimization procedure. REML, however, requires estimates to be within the permissible parameter space. Standard
procedures to impose constraints are available but may increase the number of computationally expensive function
evaluations required considerably. As anad hocalternative, the Hessian matrix was modified whenever estimates out
of bounds occurred, making it more diagonally dominant by multiplying its diagonals with a factor, increasing suc-
cessively until the resulting estimates of covariance matrices were (semi-) positive definite. This made the resulting
estimation step more akin to a Method of Steepest Descent step; see Searleet al. (1992) for further discussion.

Calculation of logL and its derivatives was implemented using a compressed sparse matrix storage scheme as
described by George and Liu (1981) and their FORTRAN routines GENQMD and SMBFCT to obtain a minimum
degree ordering ofM and its symbolic factorization. Forp parameters, this required 1+ p(p+ 3)/2 times as much
space as evaluation of logL only.

EXAMPLES
Characteristics of three data sets and the computational requirements for four analyses using both a NR and

a DF algorithm (with the same starting values) are summarized in Table 1. The NR algorithm was considered to
have converged when the norm of the vector of first derivatives of logL was less than 10−4 or when the likelihood
remained constant to the sixth decimal. The DF analyses used Nelder and Mead’s (1965) Simplex procedure to locate
the maximum of the likelihood, with a step size of 20% of the starting values given to set up the initial simplex and
imposing a value of 10−8 for the variance of function values in the simplex as convergence criterion.

For univariate analyses, starting values given were genetic parameters, i.e. heritabilities etc., and one DF e-
valuation of logL was carried out for the NR algorithm to obtain an initial estimate of the error variance, deriving
starting values for the other components from it. Preliminary studies had shown the NR algorithm to be sensitive
against poor starting values and this strategy to improve convergence, in particular to reduce the incidence of non-
permissible estimates in the first iterate markedly. For both models of analysis and starting values close to (‘good’)
and very different to (‘bad’) the eventual estimates, the NR converged in 5 or 6 iterates. Evaluating 4 first and 10
second partial derivatives of logL in the second analysis required about 26 times as long as evaluating logL only.
Smith (1993) estimated that each first derivative ofL required twice and each second derivative required four times
the work to calculateL only, but that using sparse matrix techniques no more than 2–4 times the work would be
required for both. However, with only few parameters to be estimated, the NR required considerably longer than
the DF algorithm in all four univariate examples shown, even for a relatively detailed model fitting both genetic and
permanent environmental effects which are expected to have high negative sampling correlations.

Multivariate analyses were carried out considering all parameters and maximizing with respect to the covariances
only initially. For this, variances were fixed to their univariate estimates, for 2 iterates for the NR algorithm and until
the variance of function values was less than 10−4 for the DF algorithm. For DF analyses, this yielded considerable
savings in the number of logL to be evaluated, in particular for a trivariate analysis. Again, on average about twice
the time required to determine logL was needed for each derivative evaluated. With a high dimension of search
(9 and 12, respectively, for the bi- and trivariate analysis), the number of function evaluations required for the DF
algorithm was large, so that the NR algorithm proved advantageous, requiring less than half of the time needed by
the former.

CONCLUSIONS
Evaluation of first and second partial derivatives of the REML likelihood models is feasible for large scale animal

model analyses. Timewise, only about twice the amount required for logL only is required per derivative, though
additional space needed to store all derivatives ofM or its Cholesky factor may be considerable. For few parameters
to be estimated, there appears to be no advantage in using a NR algorithm over a DF algorithm, though the former
will yield an estimate of the covariance matrix of estimates as a by-product. For multivariate analyses, use of the
NR algorithm may reduce computational requirements dramatically compared to a DF approach.

However, preliminary experience with the NR algorithm has shown it be markedly less robust than the DF,
being sensitive to poor starting values. Furthermore, it is not as easy to constrain estimates to the parameter space.
Further research is required to establish optimal use of information from derivatives in locating the maximum of the
likelihood, especially when searching at the bounds of the parameter space. Only the use of both first and second



Table 1 : Examples for Newton-Raphson (NR) versus Derivative-Free (DF) REML

Breed Hereford Hereford Wokalup Zebu Cross
Gooda Bada Good Bad Allb Subb All Sub

Traits(s)c WW WW CB, HH WW, YW, FW
Effects fittedd a a, m, c a, c a
Parameters estimatede σ2

A,σ2
E σ2

A,σ2
M,σ2

C,σ2
E σAi j ,σCi j ,σEi j σAi j ,σEi j

No. of parameters 2 4 9 12
No. of records 3088 3088 2664 2988
No. of animals 3331 3426 2369 1430
No. of rows inM 3535 8012 6193 4342
No. elements inM f 100,151 308,060 258,764 135,175
NR No. iterates 5 6 5 5 5 6 12 11

time/iterate [secs] 28.1 28.1 285.5 285.5 371.0 371.0 97.4 97.4
total time [secs] 143 172 1438 1438 1855 2226 1169 1071

DF No. logL evaluated 15 23 54 86 699 648 2939 1434
time/logL [secs] 2.9 2.9 10.7 10.7 7.1 7.1 2.0 2.0
total time [secs] 44 67 578 920 4963 4620 5878 2868

aUnivariate analyses for ‘good’ and ‘bad’ starting values
bMultivariate analyses maximizing w.r.t. all parameters and a subset (covariances only) first
cWW : Weaning weight, YW : yearling weight, FW : Final weight, CB : Cannon bone length, HH : Hip height
da : direct additive genetic,m : maternal genetic,c : permanent environmental maternal
eσAi j : direct additive genetic,σMi j : maternal genetic,σCi j : permanent environmental maternal, andσEi j : residual (co)variances
fLower triangle only

derivatives has been considered here; the methodology presented, however, puts a whole host of other optimization
techniques within our reach; in particular, procedures using first derivatives only (and possibly approximating second
derivatives) need to be investigated.
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