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SUMMARY
The r̂ole of covariance functions in the analysis of repeated measurements data and their relation-
ships with random regression models are reviewed. Parsimonious estimation of full or reduced
rank covariance functions by Restricted Maximum Likelihood, fitting a random regression animal
model, is described.

INTRODUCTION
There is a plethora of statistical literature on modeling and analysis of repeated records, often
referred to as longitudinal or growth curve data. These can be analysed fitting a linear model using
(restricted) maximum likelihood (Ware 1985). This framework accommodates a wide range of
assumptions about the structural form of covariance matrices (e.g. Jennrich and Schluchter 1986).
Until recently data from animal breeding applications have generally being analysed invoking
one of the extremes of this model, namely a simple constant variance, univariate “repeatability”
model or a fully parameterised, multivariate model with unstructured covariance. A specific
feature of quantitative genetic analyses, not shared by other fields, is that we want to partition the
variation due to individuals into its genetic and environmental components. This paper describes
how an intermediate parameterisation can be achieved by fitting acovariance function(CF) for
each source of variation, genetic and environmental, using arandom regression(RR) model,
and outlines Restricted Maximum Likelihood (REML) estimation of a parsimonious covariance
structure.

COVARIANCE FUNCTION ESTIMATION
Consider measurements taken repeatedly for individuals along some continuous scalet, usually
time, such as weights at various ages or test day records for milk yield at different stages of
lactation.

What are covariance functions ?Literally, a CF gives the covariance between records taken at
timesti andtj as a function of the times. A suitable class of functions is the family of orthogonal
polynomials (Kirkpatricket al.1990). With potentially infinitely many records along the contin-
uous scalet, CFs are, in essence, the ‘infinite-dimensional’ equivalent to covariance matrices. A
covariance matrix for chosen times constructed from a CF has the same rank as the CF.

Random regression coefficients. Means over time or trajectories of repeated measures, e.g.
growth or lactation curves, can be modeled by polynomial regressions. Regression coefficients
are generally treated as fixed to account for overall trends or trends within some fixed classes.
Equally, we can fit a set of random regression coefficients for each individual, to allow for indi-
vidual variation in the shape of the trajectory (Laird and Ware 1982; Henderson 1982; Jamrozik
et al.1997). Fitting a RR model, we implicitly assume a certain covariance structure among the
observations. This is determined by the covariances among the regression coefficients and can be
characterised by a covariance function.

1on leave from : Animal Genetics and Breeding Unit, University of New England, Armidale, NSW 2351, Australia



Let yi, thei−th record for an individual at timeti, be determined by some fixed effectsF , a set
of RR coefficientsβm on functionsφm(ti) of ti (m = 0, . . . , k − 1) and a measurement errorεi

yi = F +
k−1∑
m=0

βmφm(ti) + εi (1)

This gives

Cov(yi, yj) =
k−1∑
m=0

k−1∑
n=0

φm(ti)φm(tj)Cov(βm, βn)+Cov(εi, εj) = B(ti, tj)+Cov(εi, εj)(2)

whereB(ti, tj) is the covariance functionB due toβ evaluated for timesti andtj . For regressions
on orthogonal polynomials oft, B is a CF as described by Kirkpatricket al. (1990), andk is
the order of polynomial fit. Fork equal to the number of observation, the covariance matrix
among them given byB is unstructured, i.e. equal to that in the conventional multivariate model.
Otherwise, we have a reduced order fit with less parameters and a smoothed covariance structure.

Model of analysis. To impose a structure on both genetic and environmental covariances, we
need to fit corresponding sets of RR coefficients. Consider a simple animal model

y = Xb + Z∗α + Z∗Dγ + ε (3)

with y the vector ofN observations measured onND animals,b the vector of fixed effects,α
the vector ofkA × NA additive-genetic random regression coefficients (NA ≥ ND denoting
the total number of animals in the analysis, including parents without records),γ the vector
of kR × ND permanent environmental random regression coefficients, andε the vector ofN
measurement errors.X, Z∗ andZ∗D are the corresponding ‘design’ matrices, andkA andkR
denote the order of fit forα andγ and corresponding genetic and permanent environmental
CFA andR, respectively. The superscript ‘*’ marks matrices with non-zero elements equal to
functionsφm(ti). Each observation gives rise tokA or kR non-zero elements inZ∗ or Z∗D rather
than a single element of1 in the usual, finite-dimensional model.

REML estimation . Assume that the fixed part of (3) accounts for systematic trends so that
α ∼ N(0,KA ⊗A) andγ ∼ N(0,KR ⊗ IND ), with A the numerator relationship between
animals,IND an identity matrix of sizeND and⊗ denoting the direct matrix product. The
matrices of covariances between regression coefficients,KA andKR, are equal to the coefficient
matrices of the corresponding CFs,A andR. Let Cov(α ,γ ′) = 0 and, for generality, let
V (ε ) = R. This gives log likelihood (L)

logL = −1
2

(NA log |KA|+ kA log |A|+ND log |KR|+ log |R|+ log |C∗|+ y′P∗y)(4)

The log determinant of the coefficient matrixC∗ and the residual sums of squaresy′P∗y can be
obtained by factoring the mixed model matrix pertaining to (3)

M∗ =


X′R−1X X

′
R−1Z∗ X

′
R−1Z∗D X′R−1y

Z∗
′
R−1X Z∗

′
R−1Z∗ + K−1

A ⊗A−1 Z∗
′
R−1Z∗D Z∗

′
R−1y

Z∗
′

DR−1X Z∗
′

DR−1Z∗ Z∗
′

DR−1Z∗D + K−1
R ⊗ IND Z∗

′

DR−1y
y′R−1X y′R−1Z∗ y′R−1Z∗D y′R−1y

(5)

M∗ hasNF + kANA + kRND + 1 rows and columns (withNF the total number of fixed effects
fitted), i.e., its size and thus computational requirements are proportional to the order of fit of CFs.



Measurement error variances. UsuallyR can be described by few parameters, measurement er-
rors often being assumed uncorrelated. In the simplest case,R = σ2

ε IN , log |R| = N log σ2
ε , and

σ2
ε can be factored from (5), so thatM∗ can be set up as for a univariate analysis, andσ2

ε can be
estimated directly asσ2

ε = y′P∗y/(N − r(X)). Other assumptions might involve heterogeneous
variances, i.e.R diagonal, or errors following an auto-regressive or moving average process.

Maximising the likelihood. Estimates of the distinct elements ofKA andKR and the param-
eters determiningR can be obtained maximising (3), using existing REML algorithms for the
estimation of covariance components. This may involve a simple derivative-free search (Meyer
1991) or, more efficiently, a method utilising derivatives of logL such as the ‘average informa-
tion’ algorithm (Johnson and Thompson 1995). The minimum order(s) of fit required to model
the data adequately can be determined using a likelihood ratio test (LRT). This encourages an
upwards strategy, increasing the order(s) of fit stepwise until no significant increase in likelihood
is achieved.

Reduced rank covariance functions. Fitting a CF to orderk requiresk(k + 1)/2 elements
of the corresponding covariance matrix among RR coefficients,K , to be estimated. By nature,
polynomial regression coefficients are highly correlated, i.e.K is likely to havem dominating
eigenvalues with the remainder,k −m close to zero. It implies that most variation is in the di-
rections given by the eigenvectors corresponding to the large eigenvalues. Thus little information
is lost by ignoring the others, i.e. fixing them at zero (or a small positive value as, strictly speak-
ing, (5) is not defined for indefiniteK ). This not only reduces the number of parameters to be
estimated but also alleviates convergence problems frequently encountered at the bounds of the
parameter space. It appears especially advantageous where a high order of fitk is required to
model the shape of the trajectory adequately, but a subset ofm directions suffices.

Reparameterisation. Consider the Cholesky decomposition ofK , pivoting on the largest diagonal

K = LDL′ =
k∑
i=1

di li l′i (6)

whereL is a lower diagonal matrix with diagonal elements of unity,li thei−th column vector of
L , andD is a diagonal matrix with elementsdi. A reparameterisation to the non-zero off-diagonal
elements ofL and the elements ofD has been advocated to remove constraints on the parameter
space or to improve convergence rates in an iterative (RE)ML estimation scheme (Lindstrom and
Bates 1988, Groeneveld 1994, Meyer and Smith 1996). Moreover the elements ofD are the
eigenvalues ofK . Thus, assuming descending order,di > di+1, we can estimate

K+ =
m∑
i=1

di li l′i (7)

which has rankm and is described bykm −m(m − 1)/2 parameters on the Cholesky scale. A
LRT can be used to determine the minimum rank ofK+.

Breeding value estimation. Estimates ofα in the RR model take the place of estimated breeding
values in the finite, multivariate model. In some instances, the shape parameters of the trajectory
or functions thereof have an interpretation in their own right and are used to rank animals. In other
cases functions of the trajectory are of interest, for example the first derivative of a growth curve
gives an estimate of growth rate, and integrating over the lactation curve estimates lactation yield.



As CFs give a continuous description of the covariance structure over the time interval considered,
RR coefficients provide a continuous estimate of the additive genetic merit for each animal, and
conventional breeding value estimates at selected times are readily derived. The RR/CF approach
provides the flexibility to treat measurements along a trajectory as different traits and, at the same
time, facilitates efficient estimation through a reduction in dimensionality to the order of fit (or
rank) of the CF. This can be exploited in a transformation to canonical scale as described by Van
der Werfet al. (1997).

Selection response. The equivalent to the eigenvalue decomposition of a covariance matrix for a
CF is given by its eigenvalues (λi) and eigenfunctions (ζ i) (Kirkpatrick et al. 1990). These are
estimated as the eigenvalues of the corresponding coefficient matrixK and as a function of the
eigenvectorsν i of K with elementsνij

ζ i =
k−1∑
j=0

νij φj(t) (8)

Note thatφj(t) in (8) is not evaluated for any particular time, i.e.ζ i is a continuous (polynomi-
al) function oft. Any change in the mean trajectory can be expressed as a weighted sum of the
eigenfunctions with the rate of change determined by the eigenvalues. A decomposition of the
genetic CFA thus provides valuable insight in the potential response to selection along the com-
plete trajectory - eigenfunctions ofA representing possible deformations and the corresponding
eigenvalues quantifying the amount of genetic variation available in each direction (Kirkpatrick
et al.1990).

CONCLUSIONS
Repeated measurements for traits gradually changing with time can be modeled using RR coef-
ficients. Regressing on orthogonal polynomials of time does not require any prior assumptions
about the shape of the trajectory to be modeled, and the resulting covariance structure can be de-
scribed by a CF as proposed by Kirkpatricket al. (1990). Conversely, genetic and environmental
CF can be estimated by REML fitting RR coefficients for each source of variation. A parsimo-
nious model can be achieved by fitting reduced rank CF. Minimum rank and order of fit can be
determined using a likelihood ratio test.
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