
ESTIMATES OF GENETIC COVARIANCE FUNCTIONS FOR GROWTH OF
NELORE CATTL E ASSUMING A PARAMETRIC CORRELATION

STRUCTURE FOR ANIMAL PERMANENT ENVIRONMENTAL EFFECTS

Lucia Galvão de Albuquerque1 and Karin Meyer

Animal Genetics and Breeding Unit2, University of New England, Armidale,
NSW 2351, Australia

INTRODUCTION
Random regressions (RR) on Legendre polynomial (LP) of age have been used to model
longitudinal data such as milk production and weights at different ages.  Usually such models
involve high degree polynomials, especiall y for direct permanent environmental effects and,
consequently, a large number of parameters to be estimated.  High order polynomials are
associated with sampling problems (Kirkpatrick et al., 1994) and high computational
requirements.  Parametric correlation functions combined with variance functions provide a
more parsimonious alternative, and have been suggested to model within animal (co)variances
(Foulley et al., 2000).  This paper presents estimates of genetic covariance functions for growth
of Nelore cattle, fitting a parametric correlation function to describe the covariance structure
between animal, permanent environmental effects.

MATERIAL AND METHODS
Data.  A total of 20,065 weights from 3,016 Nelore animals, offspring of 87 sires and 1903
dams, distributed in 523 contemporary groups (CG) in a single herd were analysed. CG were
defined as year-month of birth, sex, weaning status (suckling or weaned) and year-month of
weighing subclasses.  Numbers of animals and mean weights are shown in figure 1.  Animals
were weighed every three months from birth to 630 days of age.  All animals had birth weight,

and 79% of animals had six or
more records.  To increase the
number of animals for each age,
animals weighed within four days
intervals were considered the same
age, creating 156 age classes,
including birth weight.  Data have
been analysed previously, see
Albuquerque and Meyer (2001)
for further details.

Analysis.  Direct (A) and maternal
(M) genetic effects and maternal
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Figure 1.  Number of animals (❙❙❙❙) and mean weights (●●●●).



Table 1.  Corr elation functions
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rij: correlation between records taken at
times ti and tj, i <j, ρ : auto-correlation,
θ: corresponding exponential parameter,
and κ : scale parameter.

permanent environmental  (C) effects were
modelled through RR on LP of age.  Orders of fit
for A, M and C were 4, 4 and 3 respectively.
Changes in variances due to direct permanent
environmental (PE) effects were modelled through
a polynomial variance function (VF), considering
orders of fit up to 5.  A parametric correlation
function (RF) was used to model the PE
correlation between ages.  Two stationary RF
(EXP : exponential and DEX : `damped´
exponential) and a non-stationary function (SAD :
first- order structured ante-dependence model)
were considered.  Formulae for RF are shown in
table 1.  EXP has a single parameter, the
exponential equivalent to an auto-correlation.

DEX has a second parameter to scale - attenuate or accelerate - the exponential decay of the
auto correlation.  SAD applies a deformation.ƒ(ti, κ) = (tκ

i –1)/κ for κ≠0 and log(ti) for κ=0, of
the time scale to accommodate non-stationarity (Nuñez-Anton and Zimmerman, 2000).
Temporary environmental effects were considered independently distributed with
homogeneous (e=1) or heterogeneous variances (σ2).  The latter were modelled as a step
function with e=6 (0-103, 104-159, 160-255, 256-527, 528-591, 592-630 days) or e=7 classes
(as e=6 except for a separate class for birth weight), or through a VF involving a cubic
polynomial of log(σ2).  Analyses were carried out by restricted maximum likelihood (REML)
as described by Meyer (2001).  Model fit was compared using the REML forms of Akaike’s
(AIC) and Schwarz’ Bayesian (BIC) information criterion, and by examining variance and
correlation estimates for ages in the data.  Results were contrasted with estimates from
previous analyses fitting LP on age to model direct PE effects (Albuquerque and Meyer, 2001).
In the following, “LPk” denotes a model fitting a LP of order k for PE, and “X.VFv” is a model
fitting a parametric RF together with a VF of order v with X= EXP, DEX or SAD.

RESULT S
Table 2 presents likelihoods, information criteria and estimated parameters of the RF, showing
ρ= EXP{ -θ} instead of θ.  Estimates of the lag-1 correlation, ρ, were high for all models.  A
cubic polynomial suff iced to model PE variances adequately.  All analyses resulted in smaller
BIC values than the LP model, even for homogeneous σ2.  This was due to the stringent
penalty for the number of parameters inherent in BIC.  Modell ing PE through a RF instead of
LP reduced the number of parameters by at least 12.  For models fitting a VF for residual
variances, κ were all close to unity reducing SAD to an auto-correlation function.  There were
small differences in log L, and BIC was smaller for EXP than for DEX and SAD.  However,
for e=6 or e=7, estimates of κ were around 0.5, i.e. correlations between records equidistant in
time increased with age.  Models assuming SAD VF3 with e=6 or e=7 had higher log L and
smaller AIC and BIC than SAD VF3 with a cubic VF for residuals.  Presumably this was due
to the higher number of parameters available to model environmental variances not explained



Table 2.  L ikelihood cr iter ia and RF parameters

Model pa log Lb AICc BICd ρe κf

Residuals modelled by a cubic VF
LP6 51 -61 224 625
EXP  VF3 35 -125 320 597 0.981 1.00
DEX VF3 36 -124 319 603 0.983 1.02
DEX VF4 37 -123 319 611 0.985 1.02
DEX VF5 38 -121 318 617 0.983 1.00
SAD VF3 36 -122 317 600 0.980 0.95

Classes of residuals
SAD VF3 e1 33 -145 356 616 0.982 1.04
SAD VF3 e6 38 -55 226 526 0.945 0.59
SAD VF3 e7 39 -63 206 513 0.926 0.47
anumber of parameters, blog li kelihood (+51,500),
cAkaikeś s and dSchwarz´ Bayesian information
criterion (both –103,000), eauto-correlation and fscale
factor.

by animal permanent environmental
effects.  Based on both criteria (AIC
and BIC) model SAD VF3 with 7
classes for σ2 and 39 parameters to
be estimated fitted best.

Estimates of variances for the best
model, and the corresponding LP
model for PE (from Albuquerque
and Meyer (2001)) are shown in
figure 2.  Phenotypic variance estim-
ates agreed well .  Differences, albeit
small, occurred mainly in the parti-
tioning of animal and residual
variances, while estimates of mater-
nal variances (not shown) were not
affected by the model for PE.
Modelli ng residual variances as a

cubic variance function (SAD VF3, 36 parameters) or a step function with e=6 classes (38
parameters) instead of e=7 produced large changes not only in residual variance estimates, but
also in the estimates of direct effect variances.  In contrast, Olori et al. (1999) found that fitting
different models for residual variances resulted in changes in log L and in estimates of residual
variances, without affecting estimates of animal effect variances notably.  Analyses fitting
SAD for PE and a quintic LP for A (Albuquerque and Meyer, unpublished), however, showed
a behaviour similar to Olori’s et al. (1999) results, i.e. estimates of genetic direct variance
components were robust to differences in modell ing the residual variances.  Heritabil ities
estimated (not shown) by the best RF model were similar to those obtained by the LP model.

Average correlations, plotted against lags in age at recording, for models fitting LP, EXP or
SAD for PE are shown in figure 3.  Residual variances were modelled trough a cubic variance

Figure 2.  Phenotypic (σσσσP
2), direct genetic (σσσσA

2) and permanent environmental (σσσσR
2)

var iance estimates (kg2/100), fitt ing LP6 (●●●●) and SAD VF3 with e=7 (▲▲▲▲) for PE



Figure 3.  Average estimates of phenotypic (▲▲▲▲), direct genetic (●●●●) and permanent
environmental (■■■■) cor relations.

function for LP and EXP models and a step function (e=7) for SAD.  Average correlation
estimates for SAD fitting a cubic variance function for residual variances (not shown) were
very similar to those obtained using EXP.  This was to be expected, as SAD corresponds to a
stationary model (autocorrelation function) for κ close to unity.  The model for PE did not
affect phenotypic correlation estimates markedly, though estimates for a lag of one day were
smaller for LP than for the RF models.  However, correlation estimates for direct effect
differed between models.  EXP is a stationary function i.e. correlations depend only on the lag
between ages.  PE correlation estimates thus showed a steady decline with increase in lag.  For
LP and SAD, the decrease in estimates with lag in age at recording was smaller than for EXP.
Estimates of direct genetic correlations for the LP model levelled of for lags larger than 560
day, indicating a slight increase in estimates of correlations between early and late weights.

CONCLUSIONS
Results suggest that correlation functions, combined with a variance function to account for
heterogeneous variances, can model covariances between direct permanent environmental
effects adequately.  Moreover, they can reduce the number of parameters needed substantially
compared to a model fitting a RR on LP of age.  A non-stationary function appears most
appropriate.  There are indications that the robustness of variance component estimates to
changes in the model for residual variances depends on the order of polynomial fit for direct
genetic effect variances.  Further research is necessary to verify this result.  Furthermore,
consequences of different partition of direct effect variances on predictions of breeding values
and response to selection have to be investigated.
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