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INTRODUCTION

Random regressons (RR) on Legendre polynomia (LP) of age have been used to model
longitudina data such as milk production and weights at different ages. Usually such models
involve high degree polynomials, espedally for dired permanent environmenta effects and,
consequently, a large number of parameters to be estimated. High order polynomids are
aswciated with sampling problems (Kirkpatrick et al., 1994) and high computational
requirements. Parametric correlation functions combined with variance functions provide a
more parsimonious alternative, and have been suggested to model within animal (co)variances
(Foulley et al., 2000). This paper presents estimates of genetic covariance functions for growth
of Nelore cittle, fitting a parametric correlation function to describe the @variance structure
between animal, permanent environmental effects.

MATERIAL AND METHODS

Data. A tota of 20,065 weights from 3,016 Nelore animals, offspring of 87 sires and 1903
dams, distributed in 523 contemporary groups (CG) in a single herd were analysed. CG were
defined as year-month of birth, sex, weaning status (suckling or weaned) and year-month of
weighing subclasses. Numbers of animals and mean weights are shown in figure 1. Animals
were weighed every threemonths from birth to 630 days of age. All animals had kirth weight,
and 7% of animals had six or
more rewmrds. To increase the
number of animas for each age,
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Tablel. Corr dation functions permanent environmental (C) effects were
modell ed through RR on LP of age. Orders of fit

RE P Fi for A, M and C were 4, 4 and 3 respedively.
EXP 6 -0(t;-t,) Changes in variances due to dred permanent

e environmental (PE) effeds were modell ed through
DEX 6,k e—B(tJ )" a polynomial variance function (VF), considering

orders of fit up to 5 A parametric correlaion
SAD p,k p ') for i+l function (RF) was used to model the PE
1 o correlation between ages. Two dationary RF
[eziva Meqesny fOrj>i+1  (EXP : exponentid and DEX : ‘damped
ri: correlation between records taken at exponential) and a non-stationary function (SAD :
timest and t, i <j, p : auto-correlation, first- ordgr sructured ante-dependence modgl)
8: corresponding exponential parameter, were mnsidered. Formulagfor RF are shown in
and k - scale parameter. table 1 EXP has a single parameter, .the
P exponential equivalent to an auto-correlation.
DEX has a second parameter to scale - attenuate or accderate - the exponentia decy of the
auto correlation. SAD appliesa deformation. f(t;, K) = (t —1)/k for k20 and log(t) for k=0, of
the time scale to acoommodate non-stationarity (Nufiez-Anton and Zimmerman, 2000).
Temporary environmental effects were @nsidered independently distributed  with
homogeneous (e=1) or heterogeneous variances (0%). The latter were modeled as a step
function with e=6 (0-103, 104-159, 160-255, 256-527, 528-591, 592-630 days) or e=7 clases
(as e=6 except for a separate dass for birth weight), or through a VF involving a aibic
polynomial of log(c?). Analyses were arried out by restricted maximum likelihood (REML)
as described by Meyer (2001). Mode fit was compared using the REML forms of Akaike's
(AIC) and Schwarz’ Bayesian (BIC) information criterion, and by examining variance ad
correlation estimates for ages in the data. Results were @ntrasted with estimates from
previous analyses fitting LP on age to modd dired PE effects (Albuquerque axd Meyer, 2001).
In thefollowing, “LPK’ denotesamodel fitting aLP of order k for PE, and “X.VFV" isamodel
fitting a parametric RF together with a VF of order v with X=EXP, DEX or SAD.

RESULT S

Table 2 presents likelihoods, information criteria and estimated parameters of the RF, showing
p= EXP{-6} insteal of 8. Estimates of the lag-1 correlation, p, were high for all models. A
cubic polynomial sufficed to model PE variances adequately. All analyses resulted in smaller
BIC values than the LP model, even for homogeneous ¢ This was due to the stringent
penalty for the number of parameters inherent in BIC. Modelling PE through a RF ingead o
LP reduced the number of parameters by at least 12. For models fitting a VF for residua
variances, kK were al close to unity reducing SAD to an auto-correlation function. There were
small differencesin log L, and BIC was sndler for EXP than for DEX and SAD. However,
for e=6 o e=7, estimates of K were around 0.5, i.e. correlations between recrds equidistant in
time increased with age. Models asaiming SAD VF3 with e=6 or e=7 had higher log L and
smaller AIC and BIC than SAD VF3 with a aibic VF for residuals. Presumably this was due
to the higher number of parameters available to model environmental variances not explained



Table2. Likelihoad criteriaand RF parameters

Model p® logL® AIC® BIC" p° K

Residuals modell ed by acubic VF

LP6 51 -61 224 625

EXP VF3 35 -125 320 597 0.981 1.00
DEX VF3 36 -124 319 603 0.983 1.02
DEX VF4 37 -123 319 611 0.985 1.02
DEX VF5 38 -121 318 617 0.983 1.00
SAD VF3 36 -122 317 600 0.980 0.95

Classsof residuals

SADVF3el 33 -145 356 616 0.982 1.04
SADVF3e 38 -55 226 526 0.945 059
SADVF3e7 39 -63 206 513 0.926 0.47

number of parameters, “log likelihood (+51,500),
‘Akaikes's and “Schwarz Bayesian information
criterion (bath —103,000), ®auto-correlation and 'scale
factor.

cubic variance function (SAD VF3, 36 parameters) or

by anima permanent environmental
effeds. Based on bath criteria (AIC
and BIC) modd SAD VF3 with 7
classs for 0% and 39 parameters to
be estimated fitted best.

Estimates of variances for the best
model, and the @rresponding LP
mode for PE (from Albuquerque
and Meyer (2001) are shown in
figure 2. Phenotypic variance estim-
ates agreed well. Differences, abeit
small, ocaurred mainly in the parti-
tioning o animal and residua
variances, while estimates of mater-
nal variances (not shown) were not
affeded by the modd for PE.
Modédlling residual variances as a
a step function with e=6 classes (38

parameters) instead of e=7 produced large changes not only in residua variance estimates, but
alsoin the estimates of dired effect variances. In contrast, Olori et al. (1999) found that fitting
different modelsfor residual variances esulted in charges inlog L and in estimates of residud

variances, without affeding estimates of anima effect

variances notably. Analyses fitting

SAD for PE and a quintic LP for A (Albugquerque and Meyer, unpubli shed), however, showed
a behaviour similar to Olori’s et al. (1999) results, i.e. estimates of genetic dired variance
components were robust to differences in modelling the residua variances. Heritabilities

estimated (not shown) by the best RF model were similar

to those obtained by the LP model.

Average arrelations, plotted against lags in age & recording, for models fitting LP, EXP or
SAD for PE are shown in figure 3. Residual variances were modell ed trough a cubic variance
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Figure 2. Phenotypic (o2, dired genetic (0a%) and permanent environmental (ox?)

variance estimates (kg?/100), fitting LP6 (e ) and SAD

VF3 with e=7 (a) for PE
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Figure 3. Average estimates of phenotypic (a), direct genetic (e) and permanent
environmental (m) correlations.

function for LP and EXP models and a step function (e=7) for SAD. Average rrelaion
estimates for SAD fitting a aubic variance function for residud variances (not shown) were
very similar to those oltained using EXP. This was to be expected, as SAD corresponds to a
stationary model (autocorrelation function) for k close to unity. The modd for PE did not
affed phenotypic correlation estimates markedly, though estimates for alag o one day were
smaller for LP than for the RF models. However, correlation estimates for dired effect
differed between models. EXP isa stationary function i.e. correlations depend anly on the lag
between ages. PE correlation estimates thus showed a steady dedine with increasein lag. For
LP and SAD, the deaease in estimates with lag in age at recording was snall er than for EXP.
Estimates of dired genetic correlations for the LP mode levelled of for lags larger than 560
day, indicaing adight increasein estimates of correlations between ealy and late weights.

CONCLUSIONS

Results suggest that correlation functions, combined with a variance function to acoount for
heterogeneous variances, can model covariances between dired permanent environmenta
effeds adequately. Moreover, they can reduce the number of parameters needed substantially
compared to a model fitting a RR on LP of age. A non-stationary function appeas most
appropriate. There are indicaions that the robustness of variance @mponent estimates to
changes in the model for residual variances depends on the order of polynomial fit for direa
genetic dfect variances. Further research is necessry to verify this result. Furthermore,
consequences of different partition of dired effect variances on predictions of breeding values
and response to seledion have to ke investigated.

REFERENCES

Albuguergue, L.G. and Meyer, K. (2001) J. Anim. ci. 79:.2776-2789.

Foulley, J.-L., Jaffrézic, F. and Robert-Granié, C. (2000) Genet. Sl. Evol. 32:129-141.
Kirkpatrick, M., Hill, W.G. and Thompson, R. (1994 Genet. Res. 64:57-69.

Meyer, K. (2001 Genet. Sdl. Evol. 33:557-585.

NUfiez-Antén, V. and Zimmerman, D.L. (2000 Biometrics 56:699-705.

Olori, V.E., Hill, W.G., McGuirk, B.J. and Brotherstone, S. (1999) Livest. Prod. ci. 61:53-63.



