To have your steak and eat it: Genetic principal component analysis for beef cattle data

Karin Meyer

Animal Genetics and Breeding Unit, University of New England, Armidale
kmeyer@didgeridoo.une.edu.au

Motivation

- Multiple, correlated random effects
 - several traits, random regression coefficients
- Covariance matrix generally assumed ‘unstructured’
 - \(k\) variables \(\rightarrow k(k+1)/2\) covariances
- Recent interest in imposing ‘structure’ \(\rightarrow\) parsimony
 - Constrain selected components or their functions
 - Variance function + parametric correlation structure
 - auto-regressive, structured ante-dependence, etc. (Gilmour & Thompson, 2006)
 - Alternative: parameterisation based on
 - eigen-decomposition \(\rightarrow\) principal components (PCs)
 - factor analytic structure (e.g. Jennrich & Schluchter, 1986)
 - reduced rank models

Objectives

- So far: Two-step procedure
 - Estimate unstructured covariance matrix \(\rightarrow\) decompose
 - Transform data to PCs (phenotypic SS/CP) \(\rightarrow\) estimate parameters of new 'traits'
- Better: Directly estimate leading PCs only
 - feasible within standard linear mixed model framework
 - requires simple re-parameterisation only

This paper

- Review direct estimation of leading principal components
- Show application to beef cattle carcass traits
Introduction

- **Dimension reduction**
- **Factor analysis**

Basics of Principal Components

- **Dimension reduction**
- **Factor analysis**

- **Set of** k correlated variables v with covariance matrix Σ
 - traits
 - random regression coefficients
- **Principal components** are the set of k variables which are
 - linear functions of original effects v
 - uncorrelated with each other
 - successively explain maximum variation
- **Eigen-decomposition**: $\Sigma = E \Lambda E' = \sum_{i=1}^{k} \lambda_i e_i' e_i$
 - $E E' = I$
 - assume $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_k$
 - eigenvector e_i gives direction $\rightarrow P_i = e_i' v$
 - eigenvalue λ_i gives variance explained

Toy example

$\Sigma = \begin{pmatrix} 2 & -1.05 \\ -1.05 & 1 \end{pmatrix}$

$\Lambda = \begin{pmatrix} 2.66 & 0 \\ 0 & 0.34 \end{pmatrix}$

Dimension reduction

- **Principal components**
 - summarise information
 - widely used to reduce dimensions \rightarrow no. variables
- P_i explains maximum variation given P_1, \ldots, P_{i-1}
- $\text{Var}(P_{m+1}) = \lambda_{m+1}$ close to zero
 - P_{m+1}, \ldots, P_k provide negligible information
 - P_{m+1}, \ldots, P_k can be ignored
 - Dimension reduced from k to m
- Consider first m PCs only $\rightarrow \Sigma^* = \sum_{i=1}^{m} \lambda_i e_i' e_i = E_m \Lambda_m E'_m$
 - Σ^* has reduced rank m
 - Σ^* has $m(2k - m + 1)/2$ parameters
 - not $m + mk$ as $e_i' e_i = 1$ and $e_i' e_j = 0$
Factor analysis

Different concept
- PCA → identify variables explaining maximum variance
- FA → find common factors which explain covariances

Fit latent model: \(v = Fz + \epsilon \)
- \(F = E_m A_m^{1/2} \)
- \(\text{Var}(z) = I_m \)
- \(\text{Var}(\epsilon) = \Psi = \text{Diag}\{\sigma_i^2\} \)
 - \(\sigma_i^2 \): specific variances \(i = 1, \ldots, k \)
- \(\text{Var}(v) = \Sigma^+ = E_m A_m E_m^T + \Psi = \Sigma^* + \Psi \)
 - \(\Sigma^* \) generally has full rank \(k \)
 - \(\Sigma^* \) involves \(m(2k - m + 1)/2 + k \) parameters
 - \(\leq k(k + 1)/2 \) → limit on \(m \)

Factor analysis

- Different concept
- PCA → identify variables explaining maximum variance
- FA → find common factors which explain covariances

Fit latent model: \(v = Fz + \epsilon \)
- \(F = E_m A_m^{1/2} \)
- \(\text{Var}(z) = I_m \)
- \(\text{Var}(\epsilon) = \Psi = \text{Diag}\{\sigma_i^2\} \)
 - \(\sigma_i^2 \): specific variances \(i = 1, \ldots, k \)
- \(\text{Var}(v) = \Sigma^+ = E_m A_m E_m^T + \Psi = \Sigma^* + \Psi \)
 - \(\Sigma^* \) generally has full rank \(k \)
 - \(\Sigma^* \) involves \(m(2k - m + 1)/2 + k \) parameters
 - \(\leq k(k + 1)/2 \) → limit on \(m \)

Fit latent model: \(v = Fz + \epsilon \)
- \(F = E_m A_m^{1/2} \)
- \(\text{Var}(z) = I_m \)
- \(\text{Var}(\epsilon) = \Psi = \text{Diag}\{\sigma_i^2\} \)
 - \(\sigma_i^2 \): specific variances \(i = 1, \ldots, k \)
- \(\text{Var}(v) = \Sigma^+ = E_m A_m E_m^T + \Psi = \Sigma^* + \Psi \)
 - \(\Sigma^* \) generally has full rank \(k \)
 - \(\Sigma^* \) involves \(m(2k - m + 1)/2 + k \) parameters
 - \(\leq k(k + 1)/2 \) → limit on \(m \)

Reparameterising the linear mixed model

- 'Standard', full rank model
 \[y = Xb + Zu + \epsilon \quad \text{with} \quad \text{Var}(u) = \Sigma \otimes A \]

- Reparameterise
 \[y = Xb + Z (Q \otimes I_N) (Q^{-1} \otimes I_N) u + \epsilon \]
 \[= Xb + Z^* u^* + \epsilon \]
- For \(Q = E \) → equivalent models
 - \(u^* \) → vector of (genetic) PCs
 - \(\text{Var}(u^*) = \Lambda \otimes A \)
- For \(Q = E_m \) → fit leading \(m \) PCs only
 - \(u^* \) has \(m \) elements per animal
 - backtransform: \(\hat{u} = (E_m \otimes I) \hat{u}^* \)

Reduced rank estimation

Alternative forms for variance component estimation

- \(Q = E_m A_m^{1/2} \)
 - \(\text{Var}(u^*) = I_m \otimes A \)
 - FA model with zero specific variances
 - Linear equations determine elements given by orthogonality constraints on \(E \)
 - Estimate \(\hat{\lambda}_i = \hat{q}_i q_i^T \)

- \(Q = L_m \)
 - \(\Sigma = LL' \) → Cholesky factor
 - Singular value decomp. \(L = E \Lambda^{1/2} T \) \(\text{(e.g. Harville, 1997)} \)
 - Estimate \(P_1 \) to \(P_m \) of \(\Sigma \) estimate columns 1 to \(m \) of \(L \)
 - \(TT' = I \) → orthogonal rotation of parameter space
 - non-zero elements → correct no. of parameters
 - Cholesky form → good convergence rates
REML estimation for PC model

\[\mathbf{y} = \mathbf{Xb} + \mathbf{Z}^* \mathbf{u}^* + \mathbf{\epsilon} \]

- Standard REML algorithms readily adapted
 - Parameters to be estimated part of design matrix
 \[\frac{\partial \mathbf{Z}^*}{\partial q_{ij}} = \mathbf{Z} \left(\frac{\partial \mathbf{Q}}{\partial q_{ij}} \otimes \mathbf{I}_N \right) \]
- ‘Average information’ REML
 - Thompson *et al.* (2003) → invert coefficient matrix MME
 - Meyer & Kirkpatrick (2005) → automatic differentiation
- Expectation-Maximisation
 - ‘Parameter Expanded’ (PX-EM) → same form of reparameterisation of standard model
 - Reversed rôles of auxiliary & 'main' parameters
 - PX-EM algorithm (Foulley & van Dyk, 2000) almost directly gives estimators for PC model

Traits

14 ‘carcass’ traits in genetic evaluation of beef cattle
- 6 carcass traits *per se* → report breeding values
- 8 live ultra-sound scan traits

Measured on live animals
- *Heifers or steers*
 - 7 Eye muscle area \(H.EMA \)
 - 8 Intra-muscular fat \(H.IMF \)
 - 9 Rump fat depth \(H.P8 \)
 - 10 Rib fat depth \(H.RIB \)
- *Bulls*
 - 11 Eye muscle area \(B.EMA \)
 - 12 Intra-muscular fat \(B.IMF \)
 - 13 Rump fat depth \(B.P8 \)
 - 14 Rib fat depth \(B.RIB \)

Data

- Records for Angus cattle
- Carcass traits
 - Data from meat quality research project
 - Progeny test records \(C.WT, C.P8 \& C.RIB \)
- Live ultra-sound scan traits
 - Field data → accredited operators
 - 300 to 700 days of age
 - Select animals in herds of origin of carcass traits
- 121 924 records on 30 427 animals
 - 883 \(C.RBY \) to 3 780 \(C.WT \) records for carcass
 - 7 686 \(B.IMF \) to 18 362 \(H.P8 \) records for scan
Analyses

- Estimate covariance components using REML (WOMBAT)
- 14-trait multi-variate analyses
- Standard fixed effects
- Simple animal model; 45,928 animals in pedigree
- Genetic covariance matrix
 - Full rank → F14 with 168 parameters
 - Reduced rank fitting m PCs → F3 to F11
- Residual covariance matrix
 - Full rank throughout → 63 non-zero components

Likelihood & information criteria

Which model fits best?

First genetic PC

Explains 58% of genetic variation

- Weight / genetic SD
- log L
- $\frac{1}{2}$ AIC
- $\frac{1}{2}$ BIC

First PC

Second PC

Third PC

Sum

Residual covariance matrix

- Full rank throughout → 63 non-zero components

Estimates of eigenvalues

- Full rank throughout → 63 non-zero components

K. Meyer Genetic principal components

BWCGALP 18 / 28

K. Meyer Genetic principal components

BWCGALP 19 / 28

K. Meyer Genetic principal components

BWCGALP 20 / 28
Introduction
PC basics
PCs in MMs
Application
Discussion
Data & Analyses
Results

Second & third PC

Explain 32% & 4% of variation

\[\text{Second} \]

\[\text{Third} \]

Estimates of genetic parameters fitting 8 PCs

\[h^2 \text{ on, } r_G \text{ below, } r_E \text{ above diagonal (x100)} \]

<table>
<thead>
<tr>
<th>Carcass</th>
<th>Heifers/steers</th>
<th>Bulls</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.WT</td>
<td>51 86 -19 -23 -22</td>
<td>28 5 10 -5</td>
</tr>
<tr>
<td>C.RBY</td>
<td>10 75 -32 -14 -33</td>
<td>39 7 3</td>
</tr>
<tr>
<td>C.EMA</td>
<td>-46 23 22 23 15</td>
<td>52 21 20 16</td>
</tr>
<tr>
<td>C.P8</td>
<td>-18 -52 -3 38 36</td>
<td>9 30 22 20</td>
</tr>
<tr>
<td>C.RIB</td>
<td>-18 -82 -21 83</td>
<td>2 16 23 8</td>
</tr>
<tr>
<td>C.IMF</td>
<td>-30 -43 -21 26 31</td>
<td>58 -7 4 15</td>
</tr>
<tr>
<td>H.EMA</td>
<td>51 47 -4 -11 -36</td>
<td>31 30 29 20</td>
</tr>
<tr>
<td>H.P8</td>
<td>17 37 77 73 31</td>
<td>41 69 46</td>
</tr>
<tr>
<td>H.RIB</td>
<td>19 67 62 28 20</td>
<td>78 19</td>
</tr>
<tr>
<td>H.IMF</td>
<td>33 69 31</td>
<td>69 21</td>
</tr>
<tr>
<td>B.EMA</td>
<td>43 41 56 -23 -36</td>
<td>87 0 -4 1 26</td>
</tr>
<tr>
<td>B.P8</td>
<td>-2 62 -19 63 81</td>
<td>34 70 64 19</td>
</tr>
<tr>
<td>B.RIB</td>
<td>-9 -53 -12 62</td>
<td>82 25</td>
</tr>
<tr>
<td>B.IMF</td>
<td>17 -41 -24 41</td>
<td>59 5 40 46 65</td>
</tr>
</tbody>
</table>

'Biplot'

- Summarise PCA
 - plot 'weights' in P_1 vs. P_2
 - cluster similar traits

1. Introduction
2. Basics of Principal Components
3. PCs in Mixed Models
4. Application
5. Discussion
PCs versus canonical transformation

- Canonical transformation
 - Diagonalise 2 matrices simultaneously
 \[TVT' = \Omega \] and \[TWT' = I \]
 with \[W^{-1}V = T\Omega T' \]
 - Transform data
 - Reduce \(k \)–variate analysis to \(k \) univariate analyses
 - Restricted applicability
 - all traits recorded for all animals
 - equal design matrices

- PC parameterisation
 - Applied to one covariance matrix at a time
 - 'Transform' MME not data
 - Applicable to wide range of models
 - different rank for different random effects
 - decompose covariance matrix of correlated effects

Open questions

- How many PCs?
 - Bias versus sampling errors → MSE
 - Sampling properties
 - Repartitioning between sources of variation
 - Which criterion for model selection

- Shape of likelihood function?
 - Slow convergence for reduced rank REML
 - Last eigenvalue fitted tends to be underestimated
 - Alternative parameterisation
 - Better algorithm

Computational considerations

- PC model
 - Size of MME \(\propto m \) not \(k \)
 - No. of non-zero elements in coefficient matrix \(\propto m^2 \)
 - Operation count per log \(\mathcal{L} \) \(\propto m^x \) with \(x > 2 \)

- Small reduction in rank → big impact on computing required

- REML convergence
 - Less parameters but more AI steps
 - Gradual approach to max. log \(\mathcal{L} \)
 - Negate some comput. advantages
 - Reasons? Remedy??

Conclusions

- Direct estimation of PCs within mixed model analyses
 - is feasible
 - is highly appealing

- Advantages
 - Greater parsimony → more efficient use of data
 - genetic evaluation: fewer EBVs to be obtained
 - variance components: estimate fewer parameters
 - Decrease computational demands
 - facilitate analysis of larger data sets & more traits
 - Readily interpretable results
 - characterise patterns of covariances in multiple dimensions