To have your steak and eat it: Genetic principal component analysis for beef cattle data

Karin Meyer

Animal Genetics and Breeding Unit, University of New England, Armidale kmeyer@didgeridoo.une.edu.au

Introduction PC basics PCs in MMs Application Discussion

Outline

- Introduction
- 2 Basics of Principal Components
 - Dimension reduction
 - Factor analysis
- PCs in Mixed Models
 - Parameterisation
 - Reduced rank estimation
- Application
 - Data & Analyses
 - Results
- Discussion

Introduction PC basics PCs in MMs Application Discussion

Motivation

- Multiple, correlated random effects
 - several traits, random regression coefficients
- Covariance matrix generally assumed 'unstructured'
 - ▶ k variables $\rightarrow k(k+1)/2$ covariances
- Recent interest in imposing 'structure' → parsimony
 - ► Constrain selected components or their functions
 - ▶ Variance function + parametric correlation structure
 - auto-regressive, structured ante-dependence, etc.
 (Gilmour & Thompson, 2006)
 - ► Alternative : parameterisation based on eigen-decomposition → principal components (PCs)

Genetic principal components

- factor analytic structure (e.g. Jennrich & Schluchter, 1986)
- reduced rank models

Introduction PC basics PCs in MMs Application Discussion

Objectives

- So far : Two-step procedure
 - ► Estimate unstructured covariance matrix → decompose
 - ► Transform data to PCs (phenotypic SS/CP) → estimate parameters of new 'traits'
- Better: Directly estimate leading PCs only
 - feasible within standard linear mixed model framework
 - requires simple re-parameterisation only

This paper

- Review direct estimation of leading principal components
- Show application to beef cattle carcass traits

K. Meyer Genetic principal components 8WCGALP 2 / 28 K. Meyer Genetic principal components 8WCGALP 4 / 2

Introduction

- 2 Basics of Principal Components
 - Dimension reduction
 - Factor analysis

- PCs in Mixed Models
- **Application**
- Discussion

Introduction PC basics PCs in MMs Application Discussion Dimension reduction Factor analysis

Dimension reduction Factor analysis

What are PCs?

- ullet Set of k correlated variables $oldsymbol{v}$ with covariance matrix $oldsymbol{\Sigma}$
 - traits
 - random regression coefficients
- Principal components are the set of k variables which are
 - ▶ linear functions of original effects **v**
 - uncorrelated with each other
 - successively explain maximum variation
- ullet Eigen-decomposition : $oldsymbol{\Sigma} = \mathbf{E} oldsymbol{\Lambda} \mathbf{E}' = \sum \lambda_i \mathbf{e}_i' \mathbf{e}_i$
 - ightharpoonup $\mathbf{EE}' = \mathbf{I}$
 - ▶ assume $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_k$
 - eigenvector \mathbf{e}_i gives direction $\rightarrow \mathcal{P}_i = \mathbf{e}_i' \mathbf{v}$
 - eigenvalue λ_i gives variance explained

Toy example

Dimension reduction

Principal components

Introduction PC basics PCs in MMs Application Discussion

- summarise information
- ▶ widely used to reduce dimensions → no. variables
- \mathcal{P}_i explains maximum variation given $\mathcal{P}_1, \dots, \mathcal{P}_{i-1}$
- Var $(\mathcal{P}_{m+1}) = \lambda_{m+1}$ close to zero
 - $\triangleright \mathcal{P}_{m+1}, \dots, \mathcal{P}_k$ provide negligible information
 - $\triangleright \mathcal{P}_{m+1}, \dots, \mathcal{P}_k$ can be ignored
 - ▶ Dimension reduced from *k* to *m*
- ullet Consider first m PCs only $o \Sigma^\star = \sum_i \lambda_i \mathbf{e}_i' \mathbf{e}_i = \mathbf{E}_m \mathbf{\Lambda}_m \mathbf{E}_m'$
 - $\triangleright \Sigma^*$ has reduced rank m
 - Σ^* has m(2k-m+1)/2 parameters
 - not m + mk as $\mathbf{e}_i' \mathbf{e}_i = 1$ and $\mathbf{e}_i' \mathbf{e}_i = 0$

K. Meyer

Factor analysis

- Different concept
 - ▶ PCA → identify variables explaining maximum variance
 - ► FA → find common factors which explain covariances
- Fit latent model : $\mathbf{v} = \mathbf{F}\mathbf{z} + \boldsymbol{\epsilon}$
 - $\mathbf{F} = \mathbf{E}_m \Lambda_m^{1/2}$
 - $ightharpoonup Var(z) = I_m$
 - $ightharpoonup Var(\epsilon) = \Psi = Diag\{\sigma_i^2\}$ • σ_i^2 : specific variances (i = 1, ..., k)
- ullet Var ($oldsymbol{\mathsf{v}}$) $= oldsymbol{\Sigma}^+ = oldsymbol{\mathsf{E}}_m oldsymbol{\Lambda}_m oldsymbol{\mathsf{E}}_m' + \Psi = oldsymbol{\Sigma}^\star + \Psi$
 - Σ generally has full rank k
 - Σ^+ involves m(2k-m+1)/2+k parameters
 - $\leq k(k+1)/2 \rightarrow \text{limit on } m$

Introduction PC basics PCs in MMs Application Discussion

- Introduction
- **Basics of Principal Components**
- PCs in Mixed Models
 - Parameterisation
 - Reduced rank estimation
- **Application**
- Discussion

Introduction PC basics PCs in MMs Application Discussion

Reparameterising the linear mixed model

'Standard', full rank model

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{Z}\mathbf{u} + \boldsymbol{\epsilon}$$
 with $\mathsf{Var}\left(\mathbf{u}
ight) = \mathbf{\Sigma} \otimes \mathbf{A}$

Reparameterise

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{Z}(\mathbf{Q} \otimes \mathbf{I}_{N})(\mathbf{Q}^{-1} \otimes \mathbf{I}_{N})\mathbf{u} + \epsilon$$

$$= \mathbf{X}\mathbf{b} + \mathbf{Z}^{\star}\mathbf{u}^{\star} + \epsilon$$

- For $\mathbf{Q} = \mathbf{E} \rightarrow \text{equivalent models}$
 - u^{*} → vector of (genetic) PCs
 - $ightharpoonup \operatorname{Var}\left(\mathbf{u}^{\star}
 ight)=\mathbf{\Lambda}\otimes\mathbf{A}$
- For $\mathbf{Q} = \mathbf{E}_m \to \text{fit leading } m \text{ PCs only}$
 - \mathbf{u}^* has m elements per animal
 - ▶ backtransform : $\hat{\mathbf{u}} = (\mathbf{E}_m \otimes \mathbf{I}) \hat{\mathbf{u}}^*$

Genetic principal components

Introduction PC basics PCs in MMs Application Discussion

Parameterisation Reduced rank estimation

Reduced rank estimation

Alternative forms for variance component estimation

- \bullet Q = $\mathsf{E}_m \Lambda_m^{1/2}$
 - $ightharpoonup Var(\mathbf{u}^*) = \mathbf{I}_m \otimes \mathbf{A}$
 - ► FA model with zero specific variances
 - Linear equations determine elements given by orthogonality constraints on E
 - Estimate $\hat{\lambda}_i = \hat{\mathbf{q}}_i' \hat{\mathbf{q}}_i$
- $\mathbf{Q} = \mathbf{L}_m$
 - $\Sigma = LL' \rightarrow Cholesky factor$
 - Singular value decomp. $\mathbf{L} = \mathbf{E} \mathbf{\Lambda}^{1/2} \mathbf{T}$ (e.g. Harville, 1997)
 - \Rightarrow Estimate \mathcal{P}_1 to \mathcal{P}_m of Σ \equiv estimate columns 1 to m of \mathbf{L}
 - $TT' = I \rightarrow$ orthogonal rotation of parameter space
 - non-zero elements → correct no. of parameters
 - Cholesky form → good convergence rates

REML estimation for PC model

 $y = Xb + Z^*u^* + \epsilon$

- Standard REML algorithms readily adapted
 - ▶ Parameters to be estimated part of design matrix $\partial \mathbf{Z}^{\star}/\partial q_{ij} = \mathbf{Z} \left(\partial \mathbf{Q}/\partial q_{ij} \otimes \mathbf{I}_{N} \right)$
- 'Average information' REML
 - ► Thompson et al. (2003) → invert coefficient matrix MME
 - ► Meyer & Kirkpatrick (2005) → automatic differentiation
- Expectation-Maximisation
 - Parameter Expanded' (PX-EM) → same form of reparameterisation of standard model
 - Reversed rôles of auxiliary & 'main' parameters
 - ▶ PX-EM algorithm (Foulley & van Dyk, 2000) almost directly gives estimators for PC model

Genetic principal components **8WCGALP** 13 / 28

Introduction PC basics PCs in MMs Application Discussion

Data & Analyses Results

- **Basics of Principal Components**
- **PCs in Mixed Models**
- Application
 - Data & Analyses
 - Results

Discussion

14 'carcass' traits in genetic

evaluation of beef cattle

Traits

• 6 carcass traits $per se \rightarrow$ report breeding values

Introduction PC basics PCs in MMs Application Discussion

• 8 live ultra-sound scan traits

Measured at slaughter

C.WT Carcass weight **C.RBY**

Retail beef yield C.EMA Eye muscle area

Intra-muscular fat C.IMF

Rump fat depth C.P8

Rib fat depth C.RIB Measured on live animals

Heifers or steers

H.EMA Eve muscle area H.IMF Intra-muscular fat

9 Rump fat depth H.P8

Rib fat depth H.RIB Bulls

B.EMA 11 Eye muscle area

B.IMF Intra-muscular fat

Rump fat depth B.P8 Rib fat depth **B.RIB**

Genetic principal components

Data & Analyses Results

Data

K. Meyer

Records for Angus cattle

Introduction PC basics PCs in MMs Application Discussion

- Carcass traits
 - ▶ Data from meat quality research project
 - Progeny test records (C.WT, C.P8 & C.RIB)
- Live ultra-sound scan traits
 - ► Field data → accredited operators
 - ▶ 300 to 700 days of age
 - Select animals in herds of origin of carcass traits
- 121 924 records on 30 427 animals
 - ▶ 883 (C.RBY) to 3780 (C.WT) records for carcass
 - ▶ 7686 (B.IMF) to 18362 (H.P8) records for scan

8WCGALP K. Meyer Genetic principal components 14 / 28 Genetic principal components

Analyses

• Estimate covariance components using REML (WOMBAT)
• 14-trait multi-variate analyses
• Standard fixed effects
• Simple animal model; 45 928 animals in pedigree
• Genetic covariance matrix
• Full rank → F14 with 168 parameters
• Reduced rank fitting m PCs → F3 to F11
• Residual covariance matrix
• Full rank throughout → 63 non-zero components

K. Meyer Genetic principal components 8WCGALP 17 / 28

Introduction PC basics PCs in MMs Application Discussion Data & Analyses Results

Likelihood & information criteria

Introduction PC basics PCs in MMs Application Discussion

Introduction PC basics PCs in MMs Application Discussion Data & Analyses Results

Estimates of genetic parameters fitting 8 PCs

 h^2 on, r_G below, r_E above diagonal ($\times 100$)

K. Meyer

	Carcass						He	Heifers/steers				Bulls			
C.WT	51	86	-8	-19	-23	-22	28	5	10	-5	-	-	-	-	
C.RBY	10	75	-21	-32	-14	-33	39	-7	3	_	-	-	_	-	
C.EMA	-46	23	22	22	23	15	52	21	20	16	-	_	_	_	
C.P8	-18	-52	-3	38	36	16	9	30	22	20	-	_	_	_	
C.RIB	-18	-82	-21	83	26	18	2	16	23	8	-	_	_	_	
C.IMF	-30	-43	-21	26	31	58	-7	4	15	_	-	_	_	_	
H.EMA	51	1	47	-4	-11	-36	31	30	29	20		_			
H.P8	17	-53	-18	77	73	28	19	41	71	35	-	-	-	_	
H.RIB	19	-56	-28	62	78	22	18	87	36	38	-	-	_	-	
H.IMF	33	-42	-32	25	32	69	21	58	62	31	-	-	-	-	
B.EMA	43	41	56	-23	-36	-44	87	0	-4	1	26	25	25	21	
B.P8	-2	-62	-19	63	81	34	-4	70	64	32	-8	41	69	46	
B.RIB	-9	-53	-12	62	82	25	-4	55	68	28	-6	90	37	42	
B.IMF	17	-41	-24	41	51	59	5	40	46	65	4	70	75	24	
	K Mari									OVA/CCALD 22					

Meyer Genetic principal components 8WCGALP 23 / 28

1 Introduction
2 Basics of Principal Components
3 PCs in Mixed Models
4 Application
5 Discussion

Genetic principal components

8WCGALP

PCs versus canonical transformation

- Canonical transformation
 - ▶ Diagonalise 2 matrices simultaneously $\mathbf{TVT'} = \mathbf{\Omega} \text{ and } \mathbf{TWT'} = \mathbf{I} \text{ with } \mathbf{W}^{-1}\mathbf{V} = \mathbf{T}\mathbf{\Omega}\mathbf{T'}$
 - Transform data
 - ▶ Reduce *k*—variate analysis to *k* univariate analyses
 - Restricted applicability
 - all traits recorded for all animals
 - equal design matrices
- PC parameterisation
 - ► Applied to one covariance matrix at a time
 - 'Transform' MME not data
 - Applicable to wide range of models
 - different rank for different random effects
 - decompose covariance matrix of correlated effects

Genetic principal components

Introduction PC basics PCs in MMs Application Discussion

PC model

► Size of MME $\propto m$ not k

Computational considerations

- No. of non-zero elements in coefficient matrix $\propto m^2$
- Operation count per $\log \mathcal{L}$ $\propto m^x$ with x > 2
- Small reduction in rank → big impact on computing required
- REML convergence
 - ► Less parameters but more Al steps 2 4 2 2 1 2 2 2 2 2 4
 - Gradual approach to max. $\log \mathcal{L}$
 - ► Negate some comput. advantages
 - ► Reasons ? Remedy ??

8WCGALP

25 / 28

Open questions

• How many PCs?

Introduction PC basics PCs in MMs Application Discussion

- ► Bias *versus* sampling errors → MSE
- Sampling properties
- ▶ Repartitioning between sources of variation
- Which criterion for model selection
- Shape of likelihood function ?
 - Slow convergence for reduced rank REML
 - Last eigenvalue fitted tends to be underestimated
 - Alternative parameterisation
 - ► Better algorithm
- . . .

K. Mey

Genetic principal components

BWCGALP

27 /

Introduction PC basics PCs in MMs Application Discussion

Conclusions

- Direct estimation of PCs within mixed model analyses
 - is feasible
 - ▶ is highly appealing
- Advantages
 - ► Greater parsimony → more efficient use of data
 - genetic evaluation : fewer EBVs to be obtained
 - variance components : estimate fewer parameters
 - Decrease computational demands
 - facilitate analysis of larger data sets & more traits
 - Readily interpretable results
 - characterise patterns of covariances in multiple dimensions

K. Meyer Genetic principal components 8WCGALP 26 / 28 K. Meyer Genetic principal components 8WCGALP 28 / 2