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INTRODUCTION
Maximising the (log) likelihood (logL) in restricted maximum likelihood (REML) estimation
of variance components almost invariably represents a constrained optimisation problem. Iter-
ative algorithms available to solve this problem differ substantially in computational resources
needed, ease of implementation, sensitivity to choice of starting values and rates of convergence.
One of the most widely used methods is the ‘average information’ (AI) algorithm, which “often
converges in a few rounds of iteration” (Thompson et al. 2005). However, there have been some,
albeit mainly anecdotal reports of the AI algorithm failing to converge, in particular for analyses
involving multiple random effects, numerous traits or ‘bad’ starting values. A popular alternative
are expectation-maximisation (EM) algorithms. While these are guaranteed to increase logL in
each iterate, they are often painfully slow to converge. Recently, Foulley and van Dyk (2000)
considered the ‘parameter expanded’ (PX) variant of the EM algorithm for mixed model REML,
and demonstrated dramatically improved convergence compared to standard EM. Yet, there has
been little use of the PX-EM algorithm. No comparisons between AI and PX-EM algorithms are
available. This paper compares convergence rates of standard EM, PX-EM and AI algorithms
for some practical examples of analyses of beef cattle data.

ALGORITHMS
Average Information. In essence, the AI algorithm is a modified Newton-Raphson procedure,
replacing second derivatives of logL with the average of their observed and expected values.
Like other second order algorithms, it is expected to have quadratic convergence, but it shares
their drawbacks. Firstly, estimates are not constrained to the parameter space. This can be over-
come by an appropriate parameterisation, e.g. by estimating the elements of the Cholesky factor
of a covariance matrix rather than the covariances, often teamed with a log transformation of
the diagonal elements (Pinheiro and Bates 1996). Secondly, logL is not guaranteed to increase.
While the AI matrix is generally positive definite, which should yield an increase in logL, it is
prone to ‘overshooting’, which can yield a decrease. Often step size modification are necessary
to ensure logL attains a maximum. Typically, these require additional computations.

Expectation-Maximisation. On the other hand, EM type algorithms generally have monotone
convergence, i.e. logL increases in each iterate, and yield estimates of covariance components
within the parameter space. Moreover, they are easier to implement and require less memory than
corresponding AI algorithms. However, EM algorithms utilise information from first derivatives
of the likelihood only, and thus are expected to converge linearly. This can be very slow, and may
require many rounds of iteration. This behaviour has motivated numerous attempts to speed up
convergence. Modifications suggested include simple predictions of future values from estimates
in previous iterates, such as ’accelerated EM’ (Laird et al. 1987), Quasi-Newton type schemes,
and generalised EM algorithms; see Meng and Van Dyk (1997) for a review.
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Parameter expansion. Probably the most interesting among the new, ‘fast’ EM procedures is
the PX-EM algorithm proposed by Liu et al. (1998). Consider the standard linear, mixed model

y = Xβ + Zu + e with Var (u) = Σ ⊗ A (1)

where y, β, u and e are the vectors of observations, fixed effects, random effects and residu-
als, respectively, X and Z denote the corresponding incidence matrices, and Σ is the matrix of
covariances between random effects to be estimated. For PX-EM, rewrite (Eq. 1) as

y = Xβ + Z (I ⊗α) u? + e with Var
(
u?
)
= Σ∗ ⊗ A (2)

The elements of Σ∗ are then estimated assuming α = I, i.e. as for standard EM. In addition, we
estimate the elements of α. If there are q traits (or random regression coefficients), there are up to
q2 additional parameters. Estimators are obtained in standard fashion, equating first derivatives
of the expectation of the complete data likelihood of y (assuming β and u are known) with
respect to the elements of α to zero, and solving the resulting system of equations; see Foulley
and van Dyk (2000) for details. Estimates of Σ are then obtained applying the reduction function
Σ = αΣ∗α′. Finally, residual covariances are estimated as in standard EM, but adjusting for the
current estimate of α , I in calculating residuals, i.e. using e = y − Xβ − Z (α̂ ⊗ I) u?.

For most algorithms, computational requirements of REML estimation increase with the number
of parameters, both per iterate and overall. Hence, it seems counter-intuitive to expand their
number. Loosely speaking, the efficacy of PX-EM can be attributed to the extra parameters
capturing ‘information’ which is not utilised in EM. In each iterate, we treat the current parameter
values as if they maximised logL. Hence, away from the maximum, the expectation of the
complete likelihood is computed with error. The deviation of α̂ from I gives a measure of the
error. Adjusting estimates of Σ for α̂ then can be thought of as regressing estimates on the
difference between α̂ and its assumed value of I in standard EM (Liu et al. 1998).

MATERIAL AND METHODS
Data. Three examples of animal model analyses of beef cattle data were considered (Table 1).
Case A (Meyer and Kirkpatrick 2005) comprised 4 live ultra-sound scanning measures, treating
records on males and females as different traits. This yielded an eight-variate analysis, fitting
a simple animal model and, with zero residual covariances between sexes, 56 parameters. For
case B, birth, weaning and yearling weights for cattle in a large herd were analysed together,

Table 1. Characteristics of examples

Number of

Traits Records Anim.s Equat.s RE Par.s

A 8 20 171 8 044 65 030 1 56
B 3 10 479 6 247 31 252 3 24
C 2 32 303 66 169 197 040 4 9

fitting genetic and permanent environmental (PE)
maternal effects for all three traits. Finally, case
C (Meyer et al. 2004) involved 2 traits, mature
cow weight and gestation length. With repeated
records for trait 1, a PE effect of the animal was
fitted as random effect (RE). Trait 2 was consid-
ered a trait of the calf, affected by both PE and
genetic effects of the dam. This gave 4 REs in the
model and 9 covariances to be estimated.

Analyses. REML estimates of variance components were obtained employing AI, EM, PX-
EM and a combination of PX-EM and AI (PX×AI) algorithms for the same starting values.
AI was reparameterised to the elements of the Cholesky factors of the covariance matrices to
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Table 2. Convergence characteristics (brackets denote failure to converge)

Case A Case B Case C

‘Good’ ‘Bad’ ‘Good’ ‘Bad’ ‘Good’ ‘Bad’

logL Start 0 -391.82 -3406.69 -2218.65 -6261.90 -39.20 -2656.59
EM 20 -18.29 -89.02 -46.31 -91.34 -1.15 -80.39

50 -14.92 -74.82 -30.99 -64.42 -0.92 -48.21
100 -11.16 -58.49 -16.76 -36.14
500 – – -6.50 -3.68 – –

PX-EM 20 -3.71 -5.73 -12.46 -32.63 -1.53 -4.13
50 -2.10 -2.21 -7.33 -19.85 -1.43 -1.46

100 -2.03 -2.02 -3.56 -10.36 -0.95
500 – – -0.43 -1.37 – –

No. of AI 12 (10) (2) 42 (4) (36)
iterates log 13 (24) (12) (8)

PX×AI a 2+6 2+7 3+7 3+9
b 4+6 4+7 5+8 5+7
c 6+5 6+6 – –

be estimated, and AI-log took logarithmic values of the diagonal elements in addition. Both
enforced an increase in logL at each step. The PX×AI algorithm involved a small number (2–6)
of PX-EM iterates, followed by AI. “Good” and “bad” starting values were considered for each
case. All computations were carried out using our REML programWOMBAT (Meyer 2006).

RESULTS AND DISCUSSION
Numbers of iterates required for the AI based, and values of logL (as deviations from the max-
imum) for the EM type algorithms at selected iterates are given in Table 2. Changes in logL
for early iterates are shown in Figures 1 and 2 for cases B and C, respectively. Overall, results
confirmed the slow convergence rates of the EM type algorithms. Performance of the PX-EM
algorithm in the first few iterates was generally at least as good as that of the AI algorithm, and
substantially better if AI (or AI-log) struggled to improve logL. However, for later iterates, PX-
EM shared the slow convergence of standard EM, its advantage over EM predominantely due
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Figure 1. Early iterates for case A for good (left) and bad (right) starting values, using AI (O),
AI-log (H), EM (◦), PX-EM (•), and PX-AI (N) algorithms (inset : iterates 3–10 enlarged).
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Figure 2. Early iterates for case B (as Figure 1 otherwise).

to its performance in the first few steps. Convergence of PX-EM in later iterates might be im-
proved by applying an acceleration technique. The AI algorithm was found to be fairly sensitive
to starting values and choices involved. In terms of parameterisation, AI-log was less affected
by convergence problems at the boundary of the parameter space than AI, but tended to require
more iterates. Step size modifications were usually chosen to increase logL as much as pos-
sible in a given step, but enforcing just an increase often worked just as well and required less
computations. No indicators as to which strategy was less likely to ‘get stuck’ somewhere below
the maximum could be identified. Clearly, case C represented a model where the shape of the
likelihood surface was not conducive to the AI algorithm.

Combining a few, initial iterates of PX-EM with AI in subsequent iterates proved highly effec-
tive. In most instances, the PX-EM algorithm yielded ‘starting points’ for AI sufficiently close to
the maximum of logL so that AI converged rapidly, even if AI (or AI-log) for the same starting
values had failed. Results indicate that the PX×AI algorithm would be advantageous for rou-
tine REML estimation. A similar, but unsubstantiated suggestion has been made by Thompson
et al. (2005). While no ’cure-all’, the PX×AI algorithm seemed especially useful for reducing
computational demands of analyses involving many traits or multiple random effects.

CONCLUSIONS
More reliable and often faster convergence of REML estimation can be achieved by combining
algorithms : Exploit the stability and good performance of the PX-EM algorithm in the first few
iterates, then switch to the AI algorithm with rapid convergence close to the maximum of logL.
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