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TO HAVE YOUR STEAK AND EAT IT : GENETIC PRINCIPAL COMPONENT
ANALYSIS FOR BEEF CATTLE DATA

Karin Meyer

Animal Genetics and Breeding Unit, University of New England (a joint venture with NSW
Department of Primary Industries), Armidale, NSW 2351, Australia

INTRODUCTION
Quantitative genetic analyses usually deal with several, if not many, correlated traits or effects.
Generally, the matrices of covariances among these effects are considered to be ‘unstructured’,
i.e. for k traits we have k(k + 1)/2 distinct (co)variance components, and restrictions on esti-
mates are imposed only to ensure that estimated matrices are positive semi-definite, i.e. do not
have negative eigenvalues. In contrast, in other areas of statistics covariance matrices are often
assumed to be structured. Parametric forms, such as compound symmetry or auto-regressive
covariances (e.g. Jennrich and Schluchter 1986; Wolfinger 1996) are common assumptions for
longitudinal or spatial data. Alternative parameterisations are based on the eigen-vectors and
-values of the covariances matrices concerned. In particular, principal component (PC) analysis
is widely utilised to summarise multivariate information and as a dimension reduction technique.

So far, PC analyses (PCA) for genetic (or other random) effects have by and large been carried
out in 2 steps, first obtaining full rank estimates of covariance matrices, and then carrying out an
eigen-decomposition of the estimate. A better approach is to estimate the PCs directly, restrict-
ing estimation to the most important components only (Kirkpatrick and Meyer 2004). This is
readily accommodated within the usual linear, mixed model framework, requiring only a simple
reparameterisation. This paper reviews the direct estimation of PCs, and presents an application
to an analysis of carcass traits of beef cattle.

PRINCIPAL COMPONENTS
What are principal components ? The PCs of a set of k correlated effects are simply a set of
k variables which are a) linear functions of the effects, b) uncorrelated with each other, and c)
successively explain a maximum of variation among the k effects.
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Figure 1. Two PCs

Consider a random vector v, representing k variables, with covariance
matrix Σ. Let Σ = EΛE′, with E the matrix of eigenvectors and Λ the
diagonal matrix of eigenvalues (λi) of Σ. The PCs are then PCi = e′iv,
where ei is the i−th column of E, with e′iei = 1. Hence, the weights
or ‘loadings’ for individual effects in PCi are the elements of the corre-
sponding eigenvector, ei. The variance of PCi is given by the correspond-
ing eigenvalue, λi. As shown in Figure 1 for 2 traits, the transformation
to PCs can be thought of as a rotation of the data space, replacing the
original co-ordinate system by the axes of the data ellipsoid.

As is standard practice, assume that eigen-vectors and -values are given in descending order of
the λi. The i−th PC then explains the maximum amount of variance, given PC1 to PCi−1. (e.g.
Jollife 1986). For a given number of terms, m < k, PCs provide the expansion for which the
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error of truncation is minimised. Moreover, any PCs with λi close to zero contribute virtually no
information that is not already contained in the leading PCs. Hence, these components can be
ignored, with negligible loss of information. Often, the bulk of variation is explained by the first
few PCs, and m can be considerably smaller than k. This is the principle underlying the use of
PCs to reduce ‘dimensions’. Considering the first m PCs only to model the covariance of v gives

Σ? = EmΛmE′m =
∑m

i=1λi eie′i (1)
where Em is E truncated to the first m columns, and Λm is the corresponding, m × m submatrix
of Λ. Covariance matrix Σ?, of size k × k has rank m, and is determined by m(2k − m + 1)/2
parameters, m values λi and m(2k−m−1)/2 elements of Em. While Em has km non-zero elements,
the orthogonality constraint EmE′m = Im (where Im denotes an identity matrix of size m) reduces
the number of ‘free’ parameters (Kirkpatrick and Meyer 2004).

Factor analysis. Closely related to PCA, but with a different emphasis, is factor analysis (FA).
While PCA is predominantly concerned with identifying variables explaining maximum vari-
ation, FA is about attributing covariances between effects to common factors. In FA, we fit a
model v = Fmz + ε to our vector of random effects, with m latent variables z ∼ N (0, Im) and
errors ε ∼ N (0,Ψ). Factor loadings are given by Fm = EmΛ1/2

m , i.e. eigen-vectors ei scaled by
√
λi, and Ψ = Diag{σ2

ε i} is the matrix of specific variances. This gives covariance matrix
Σ• = FmF′m +Ψ = EmΛmE′m +Ψ =

∑m
i=1λi eie′i + Diag{σ2

ε i} (2)
Generally, Σ• has rank k and involves m(2k−m+ 1)/2+ k parameters. This implies that m needs
to be sufficiently smaller than k, so that the total number of parameters does not exceed k(k+1)/2.
If all σε i are assumed to be zero, Σ• reduces to Σ?. A typical application for FA models is the
study of genotype × environment interactions; see Smith et al. (2001) for an example.

Principal components in the mixed model. Consider the usual linear, mixed model
y = Xb + Zu + ε (3)

with y, b, u and ε the vectors of observations, fixed effects, random effects and residuals, and
X and Z the respective incidence matrices. Model (3) is general, and encompasses multiple
random effects, and standard multi-trait as well as random regression analyses. For simplicity
of presentation, however, let (3) represent a simple animal model, with u the vector of additive
genetic effects for k traits and N animals, and Var (u) = Σ ⊗ A. ‘⊗’ denotes the direct matrix
product, and A is the numerator relationship matrix between animals. Reparameterise (3) to

y = Xb + Z (Q ⊗ IN) (Q−1 ⊗ IN)u + ε = Xb + Z?u? + ε (4)
For Q=E, (3) and (4) are equivalent models and, for Σ = EΛE′ as above, u?j = E′u j is the vector
of genetic PCs for animal j (with u j the subvector of u for animal j). Choosing Q = Em, (4)
becomes a model fitting the first m PCs only, and u?j has length m. Estimates of breeding values
(EBVs) for the original traits from such reduced model are readily obtained as û j = Eû?j .

Reduced rank estimation. Standard, mixed model based methods to estimate covariance com-
ponents can be applied to estimate eigen-vectors and -values directly. The main difference to
multi-variate analyses under model (3) is that the parameters to be estimated are part of the inci-
dence matrices of random effects, i.e. that ∂Z?/∂qrs = Z (Drs ⊗ IN), with qrs the rs−th element
of Q and Drs a matrix whose rs−th element is unity and zero otherwise.
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Restricted maximum likelihood (REML) estimation for model (4) has been considered in detail
by Meyer and Kirkpatrick (2005). Choosing Q = EmΛ1/2, allows the elements of Em which are
determined by orthogonality constraints on E to be obtained by solving a ssmall system of linear
equations. Estimates of λi are then obtained simply by calculating the norms of the respective
columns of Q. This gives Var

(
u?
)
= ImN and the REML log likelihood (logL) is

−2logL = const. + log |A| + log |R| + log |C| + y′Py (5)

with R = Var (e), C the coefficient matrix in the mixed model equations for (4), and y′Py a
weighted sum of squares of residuals. The likelihood is invariant to orthogonal transformations
applied to Q. Consider the Cholesky decomposition Σ = LL′. A singular value decomposition
of the Cholesky factor gives L = EΛ1/2T′ with TT′ = I, i.e. the left singular vectors of L are
equal to the eigen-vectors of Σ and the singular values are equal to

√
λi (Harville 1997). Hence,

choosing T′ as transformation yields Q = L. In other words, we can obtain estimates of the
first m eigen-vectors and -values of a covariance matrix, by estimating the non-zero elements
of the first m columns of its Cholesky factor instead. Rotating the parameter space in this way
automatically accounts for constraints on the number of parameters - there are m(2k − m + 1)/2
non-zero elements in the first m columns of L (Smith et al. 2001).

REML algorithms. The likelihood (logL) can be maximised using common optimisation tech-
niques. In particular, the so-called ‘average information’ (AI) algorithm (Gilmour et al. 1995) is
widely used. Meyer and Kirkpatrick (2005) describe an AI-REML procedure for reduced rank
estimation via the leading PCs, using automatic differentiation of C to obtain first derivatives
of logL. Similar calculations are involved in estimating the parameters of a FA model, but in
addition to fitting u∗ of length mN, we need to fit an extra random effect with kN levels to model
the specific variances σ2

ε i. Thompson et al. (2003) outline an AI algorithm for this case which
involves inversion of C in each iterate and assumes A = I.

Recently, there has been interest in the ‘parameter expanded’ variant of the expectation maximi-
sation (PX-EM) algorithm. Application to mixed models involves a reparameterisation (Foulley
and van Dyk 2000) which is of the same form as that

APPLICATION
Data. Traits considered were eye muscle area (EMA), intra-muscular fat content (IMF), and
Table 1. Traits analysed

Trait Unit No. Mean SD

C.WT kg 3 780 348.9 82.8
C.RBY % 883 67.0 3.7
C.EMA cm2 1 847 63.4 10.3
C.P8 mm 3 385 15.34 8.57
C.RIB mm 2 640 9.77 4.94
C.IMF % 1 490 4.78 2.00
H.EMA cm2 18 170 59.1 9.1
H.P8 mm 18 362 6.34 3.15
H.RIB mm 18 278 4.88 2.36
H.IMF % 14 276 4.52 2.03
B.EMA cm2 10 409 73.6 11.9
B.P8 mm 10 313 3.79 1.81
B.RIB mm 10 405 3.06 1.44
B.IMF % 7 686 2.53 1.62

fat depth at the 12/13th rib (RIB) and P8 rump site (P8) for
Angus cattle, measured by ultra-sound scanning of live ani-
mals, or on the carcass (C.) of slaughtered heifers or steers.
In addition, carcass weight (C.WT) and percentage retail beef
yield (C.RBY) were recorded. Carcass measures were col-
lected from abattoirs under a meat quality research project by
the Australian Co-operative Research Centre for Cattle and
Beef Industry; see Reverter et al. (2000) for details. Addi-
tional records for C.WT, C.RIB and C.P8 originated from
progeny testing herds. Scan traits were recorded in the field
by accredited operators, for animals from 300 to 700 days of
age. Records for live heifers or steers (H.) and bulls (B.) were
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treated as separate traits. Scan records utilised came from
the herds of origin of animals with carcass records, select-
ing all records in contemporary groups (CG) which included
progeny of sires of animals with carcass records. After basic
edits, this yielded 121 924 records on 30 427 animals. Table

1 gives details for the 14 individual traits.

Analyses. Estimates of (co)variance matrices were obtained by REML from multivariate anal-
yses considering all 14 traits. In addition to a ‘standard’, full rank analysis (F14), reduced rank
analyses fitting the first m = 3, . . . , 11 genetic PCs only (Fm) were carried out. The residual
covariance matrix was assumed to have full rank throughout. However, carcass traits were not
measured for bulls, and no records for C.RBY and C.IMF for heifers or steers with scan records
were included in the data. This resulted in only 63 non-zero, residual (co)variances, and a to-
tal of p = 102 (F3) to p = 168 (F14) parameters to be estimated. Analyses were carried out
using an ‘average information’ REML algorithm (Meyer and Kirkpatrick 2005), supplemented
by derivative-free and expectation-maximisation steps, as implemented in WOMBAT (Meyer
2006b). Analyses were compared considering the maximum log likelihood (logL) and informa-
tion criteria (AIC : Akaike, BIC : Bayesian) derived from it.

Table 2. Characteristics of analyses

p logL -½AIC -½BIC
∑

i λi

F3 102 -407.1 -357.2 -202.4 296.5
F4 113 -152.3 -113.4 -11.8 298.0
F5 123 -82.1 -53.2 0 360.2
F6 132 -30.1 -10.2 -0.5 447.0
F7 140 -13.8 -1.9 -30.9 463.8
F8 147 -4.9 0 -62.9 466.9
F9 153 -1.1 -2.1 -94.0 469.5
F10 158 -0.3 -6.3 -122.4 469.8
F11 162 -0.1 -10.2 -145.6 469.9
F14 168 0 -16.1 -180.5 468.8

Model. Analyses fitted a simple animal model. Pedi-
gree information up to five generations backwards was
included. After ‘pruning’, this resulted in a total of
45 928 animals in the analysis. Animals with records
were progeny of 1 024 sires and 12 727 dams. Fixed
effects fitted for scan traits were contemporary groups
(CG), birth type (single vs. twin) and a dam age class
(heifers vs. cows). CG were defined as herd-sex-
management group-date of recording subclasses, with
CG subdivided further if the range of ages in a sub-
class exceeded 60 days. Furthermore, age at record-
ing, nested within sex, and age of dam were fitted as
a linear and quadratic covariables. C.WT records were
pre-adjusted to a slaughter age of 650 days, while the

other carcass traits were standardised to a C.WT of 300 kg, using the multiplicative adjustments
given by Reverter et al. (2000). The model of analysis for carcass traits then included CG, de-
fined as herd of origin-kill regime-sex of animal subclasses (where ‘kill regime’ encompassed
date of kill, abattoir, finishing regime and targeted market) as the only fixed effect.

Results. Values for logL, -½AIC and -½BIC (all given as deviation from the respective ‘best’
value) are summarised in Table 2, together with the sum of estimated genetic eigenvalues (

∑
i λi).

Both a likelihood ratio test and AIC suggest that 8 PCs suffice to summarise genetic variation
amongst the 14 traits considered. More conservatively, a model fitting only 5 (or 6) PCs and
involving 24 (or 15) parameters less was ‘best’ based on BIC. However,

∑
i λi did not stabilise

to a consistent value until at least 8 PCs were considered, suggesting that model selection on the
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Figure 2. Estimates of the first 5 genetic (•), residual (N) and phenotypic (�) eigenvalues
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Figure 3. Loadings for first 3 principal components (• : original; ◦ : standardised ×4)
basis of BIC would lead to an underestimate of total genetic variation. Estimates of the first five
eigenvalues of the estimated genetic, residual and phenotypic covariance matrices for all analyses
are shown in Figure 2. Fitting less than 6 PCs, clearly yields biased partitioning of variation –
genetic eigenvalues are underestimated, while residual values are inflated, especially for PC1.
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Figure 4. Genetic correlations for C.
RBY (◦F3, •F5, NF7, HF9, �F14)

Estimated ‘loadings’ for individual traits for the first 3
genetic PCs from analysis F8 are shown in Figure 3.
PC1 is dominated by C.WT, the trait with the largest
variance, with some positive weights for scan traits, and
slight negative weights for their counterparts measured
on the carcass. It explains 71.6% of genetic variation
between animals for the 14 traits. In essence, PC2, ex-
plaining 18.3% of variance, is a weighted sum of ‘fat-
ness’ traits, especially when considering standardised
values, i.e. loadings divided by the corresponding es-
timatates of genetic standard deviations. Similarly, PC3

is essentially a weighted sum of EMA measurements. Together, PCs 1 to 3 and 1 to 5 account
for 94.3% and 99.3% of variation, respectively.

Figure 4 illustrates the effect of fitting increasing numbers of PCs on estimates of genetic correla-
tions for C.RBY. If only PC1 were fitted, the resulting covariance matrix would have rank 1, i.e.
all correlations would be 1 or −1. Fitting more PCs attenuates correlation estimates. Fitting too
few PCs, then tends to yield correlation estimates biased towards an absolute value of unity (F3,
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F5 to some extend). Estimates from analyses F9 and F14 are virtually undishinguishable. Sim-
ilar patterns were observed for the other traits. More detailed results, including full correlation
matrices, are given by Meyer (2006a).

Table 3. Accuracy (%) of genetic evaluation

Trait 1 2 3 4 5 6 7 8

C.WT 68.0 67.8 73.0 73.4 73.4 73.9 74.0 74.0
C.EMA 1.2 12.5 74.0 74.0 74.3 74.5 74.7 74.7
C.IMF 6.3 69.8 69.8 77.3 82.1 82.0 82.4 84.2
C.RBY 10.0 64.5 64.5 64.2 71.1 81.9 82.5 82.7
C.P8 3.7 55.6 58.4 64.7 74.0 76.5 79.7 80.4
C.RIB 3.8 70.8 71.1 79.5 87.2 87.9 87.8 88.8

Accuracy. In genetic evaluation, live scan
records are generally only used to obtain
EBVs for the carcass traits. While as many
as 8 genetic PCs may be required to model
the covariance structure among the 14 traits
adequately, less PCs may suffice to deter-
mine EBVs without great loss in accuracy.
Table 3 shows the expected accuracy of eval-
uation for the carcass traits for a sire with
20 male and 20 female progeny, with 4 scan

records each, and 5 steer progeny with all carcass traits recorded, considering increasing num-
bers of PCs and assuming estimates from analysis F8 are the population values. Values clearly
reflect the loadings for individual traits in each PC. For instance, the EBV for C.WT is largely
determined by PC1, while C.EMA does not have a substantial weight until PC3. Slight decreases
in accuracy when adding a PC are explicable by a loading close to zero for the trait in the new
PC, and an increase in sampling variances of individual PCs as more PCs are estimated. Results
suggest that for breeding schemes with main emphasis on C.WT and C.EMA as few as 3 to 4
PCs may suffice, while at least 6 PCs are required if C.IMF and C.RBY are of concern.

DISCUSSION

Genetic evaluation.

CoMputational considerations.

sampling variances.

CONCLUSIONS

Meyer (2005)

Session 25. Advances in Data Analysis Communication N o 25-00



8th World Congress on Genetics Applied to Livestock Production, August 13-18, 2006, Belo Horizonte, Brazil

REFERENCES
Foulley, J. L. and van Dyk, D. A. (2000) Genet. Select. Evol. 32:143–163.
Gilmour, A. R., Thompson, R. and Cullis, B. R. (1995) Biometrics 51:1440–1450.
Harville, D. A. (1997) Matrix Algebra from a Statistician’s Perspective. Springer Verlag.
Jennrich, R. I. and Schluchter, M. D. (1986) Biometrics 42:805–820.
Jollife, I. T. (1986) Principal Component Analysis. Springer Series in Statistics. Springer Verlag,

New York.
Kirkpatrick, M. and Meyer, K. (2004) Genetics 168:2295–2306.
Meyer, K. (2005) Anim. Sci. 81:337–345.
Meyer, K. (2006a) to be decided 00:000–000 (in preparation).
Meyer, K. (2006b) Proceedings Eighth World Congr. Genet. Appl. Livest. Prod. Communication

No. 27–00; in preparation.
Meyer, K. and Kirkpatrick, M. (2005) Genet. Select. Evol. 37:1–30.
Reverter, A., Johnston, D. J., Graser, H.-U., Wolcott, M. L. and Upton, W. H. (2000) J. Anim.

Sci. 78:1786–1795.
Smith, A. B., Cullis, B. R. and Thompson, R. (2001) Biometrics 57:1138–1147.
Thompson, R., Cullis, B. R., Smith, A. B. and Gilmour, A. R. (2003) Austr. New Zeal. J. Stat.

45:445–459.
Wolfinger, R. D. (1996) J. Agric. Biol. Env. Stat. 1:205–230.

ACKNOWLEDGEMENTS
This work was supported by Meat and Livestock Australia (www.mla.com.au).

Session 25. Advances in Data Analysis Communication N o 25-00

http://www.mla.com.au

