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SUMMARY
Covariance functions are the ‘infinite-dimensional’ equivalents to covariance matrices for longitudinal data,
i.e. many, ‘repeated’ records per individual taken over a period of time. Their properties are reviewed and
illustrated with a numerical example. Restricted Maximum Likelihood estimation of genetic and phenotypic
covariance functions fitting an animal model is described.
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INTRODUCTION
Biological characteristics such as body size or growth are often recorded at various times (ages), resulting in
many, typically highly correlated measurements per individual. In some cases, these are repeated records of
the same trait, but the assumption of a univariate (‘repeatability’) model is often clearly invalid, while a ‘full’
multivariate model with the number of traits equal to the number of ages would be highly overparameterised.
This paper outlines how a ‘reduced’ multivariate model, fitting the least number of traits required to describe
the data adequately, can be identified using thecovariance functionmodel of Kirkpatrick and Heckman (1989).

COVARIANCE FUNCTIONS
What is a covariance function? In essence, a covariance function (CF) is merely the ‘infinite-dimensional’
equivalent to a covariance matrix for records taken at a number of ages. It gives the covariance between
any two records as a function of the ages at measurement. A suitable family of functions to describe CF are
orthogonal polynomials. This applies to any type of covariance matrix, genetic, environmental or phenotypic.

Properties of Covariance functionsKirkpatrick and Heckman (1989) list three advantages of the CF model
over the traditional, ‘finite-dimensional’ approach. Firstly, CFs produce a description for every point along the
continuous (time) scale of measurement. This allows for easy interpolation to obtain covariances for ages not
recorded. No prior assumptions about the shape of the curve (growth or equivalent) are required. Each record
is used at its actual age making corrections for age superfluous, when data are recorded ‘at all ages’. Secondly,
CFs allow a more accurate prediction of response to selection. Each CF has a set of associated eigenvalues
and eigenfunctions (infinite-dimensional analogues to eigenvectors) which provide valuable information about
the directions in which mean curves are likely to change most rapidly under selection. Thirdly, the CF model
makes more efficient use of the data. Fitting polynomials only to the minimum order required ensures that no
unnecessary parameters are estimated, thus minimising sampling variation.

Full order fit. Let Σ denote the covariance matrix for observations att ages, andΦ the matrix of orthogonal
polynomial functions evaluated at the given ages with elementsφi j = φ j(ai), the j−th polynomial evaluated
for agei. The covariance between records taken at agesl andm is then

S(al ,am) =
k−1

∑
i=0

k−1

∑
j=0

φi(al )φ j(am)Ki j =
k−1

∑
i=0

k−1

∑
j=0

si j a
i
l a

j
m (1)

whereS is the CF,k is the order of fit,K with elementsKi j is the matrix of coefficients of the CF,am is the
m−th age, standardised to the interval for which the polynomials are defined, andS with elementssi j is K ,



pre- and postmultiplied with the matrix of coefficients of the orthogonal polynomials. Kirkpatricket al.(1990)
use the so-called Legendre polynomials which span the interval from−1 to 1. Note that (1) includes a scalar
term, i.e., that an order of fit ofk includes functions of ages to the power 0 tok−1. Assuming a full-order
polynomial fit (k = t), (1) givesΣ = ΦKΦ′, i.eK can be estimated asK = Φ−1Σ(Φ−1)′.

Σ =

 436.0 522.3 424.2
522.3 808.0 664.7
424.2 664.7 558.0


Φ =

 φ0(−1) φ1(−1) φ2(−1)
φ0(0) φ1(0) φ2(0)
φ0(1) φ1(1) φ2(1)


=

 0.707 −1.225 1.581
0.707 0 −0.791
0.707 1.225 1.581


K =

 1348.0 66.5 −112.0
66.5 24.3 −14.0

−112.0 −14.0 14.5



Example.Kirkpatrick et al. (1990) consider body weights of
mice at ages 2, 3 and 4 weeks, which are−1,0 and 1 on the s-
tandardised scale. The covariance original matrixΣ, Φ evalu-
ated fork = 0,1,2 andK are shown on the left. This gives CF
S(ai ,a j) = 808.0 + 71.2(ai + a j) + 36.4aia j − 40.7(a2

i a j +
aia2

j )−215.0(a2
i +a2

j )+81.6a2
i a2

j . Assume we want to deter-
mine the covariance between weights at 3 and 3.5 weeks of
age. This givesai = 0 anda j = 0.5 (standardised scale) and
covariance 808.0+ 71.2×0.5−215.0×0.52 = 789.9. Simi-
larly, S gives the variance at 3.5 weeks as 775.7.

Reduced order fit. For a reduced order (k< t) fit, Φ has only
k columns and, correspondingly, the number coefficients to be
estimated is reduced tok(k+ 1)/2. As Φ is then rectangular

and does not have an inverse, Kirkpatricket al. (1990) use a weighted least-squares procedure to estimateK
in this case. Once a reduced fit matrix of coefficients has been estimated, it can be used to obtain a modified
covariance matrix,Σ∗, among thet observations, using (1). Reducing the order of fit by one has a similar
effect to setting an eigenvalue to zero, i.e., it reduces the rank of the matrix by one. In contrast to a canonical
decomposition, however, the CF approach explicitly accounts for the ordering of records and spacing of ages.
For k = 1, all (co)variances are equal, which implies that all correlations are unity.

Σ∗ =

 360.5 324.1 287.7
324.1 312.2 300.3
287.7 300.3 312.9

 Example.For k = 2, Kirkpatricket al. (1990) obtained an estimated CF
S(ai ,a j) = 312.2+ 11.9(ai + a j) + 24.5aia j . This givesΣ∗ of rank 2 as
shown on the left.

Measurement errors.Under the ‘finite’ model and with single records per age, we usually cannot disentangle
permanent and temporary environmental effects and their (co)variances. This can be done indirectly, however,
using the CF model. Kirkpatricket al. (1994) describe how to correct for the bias in the diagonal elements
of the estimated residual (or phenotypic) covariance matrix due to measurement errors, i.e. temporary envi-
ronmental effects, by extrapolating to the diagonals, after the coefficients of the CF have been estimated using
only the off-diagonals of the estimated covariance matrix. This implies that the maximum order of fit for the
CF ist−1 rather thant.

REML ESTIMATION

Model of analysis. Consider a simple animal model with single measurements att ages available for allN
individuals.

y = Xb +Za + r + ε (2)

with y, b, a, r andε the vectors of observations, fixed effects, animals additive genetic effects, permanent
environmental effects, and measurement errors, respectively, andX andZ the corresponding incidence ma-
trices. Assume a multivariate normal distribution withV(a) = ΣA×A, V(r) = ΣR× IN, V(ε) = Σε× IN and



zero covariances betweena, r andε. HereΣA = {σAi j }, ΣR = {σRi j } andΣε= Diag{ σ2
εi
} denote thet × t

matrices of additive genetic, permanent and temporary environmental covariances between measurements,A
is the numerator relationship matrix,IN is an identity matrix of sizeN, and′×′ is the direct matrix product.
The REML (log) likelihood (L) is then (Meyer, 1991)

L =−1
2

[
const+N ln |ΣR+ Σε|+NA ln |ΣA|+ t ln |A|+ ln |C|+y′Py

]
(3)

whereNA is the total number of animals in the analysis, including any parents without records,C is the
coefficient matrix in the mixed model equations (MME) pertaining to (2) (or a full rank submatrix thereof),
andP = V−1−V−1X(X′V−1X)−X′V−1 with V=Var(y).

Reparameterisation. As shown by Meyer and Hill (1996), the multivariate, “finite-dimensional” REML
analysis can be adapted to the estimation of CFs through simple reparameterisation. LetA andR denote
the covariance functions of additive genetic and permanent environmental effects with coefficients matrices
KA andKR, respectively. As for Kirkpatricket al.’s (1994) least-squares procedure, the maximum order of
fit for R is t − 1 rather thant; fitting R to the ordert − 1 together witht independent measurement errors
is equivalent to a full order fit for environmental effects. RewritingΣA = ΦAKAΦ′A andΣR = ΦRKRΦ′R, (3)
becomes a function of the coefficient matrices of the CF

L = −1
2

[
const+N ln

∣∣ΦRKRΦ′R +Diag{σ2
εi
}
∣∣+NA ln |KA|+ ln |C|+y′Py

+NA ln |ΦAΦ′A |+ t ln |A| ] (4)

This accommodates both a full and reduced order fit. Moreover, polynomials of different order,kA ≤ t and
kR < t, can be fitted forA andR , respectively. REML estimates of the distinct elements ofKA andKR and
the measurement errors ((kA(kA + 1) + kR(kR + 1))/2+ t) parameters, at leastt + 2 and at mostt(t + 1)) can
be obtained using a suitable optimisation procedure to locate the maximum of logL . This can be done forcing
estimates of variancesσ2

εi
to be positive and of matricesK to be (semi) positive definite, thus guaranteeing

estimated CFs to be (semi) positive definite. A likelihood ratio test can be used to determine the minimum
order of fit.

Example.Data for 6 ages (equally spaced) were simulated for CFs of order 3. Figure 1 shows the covariance
matrices among the 6 ages, ‘reconstructed’ from REML estimates of the genetic CF fitted to orders 2, 3 and 6,
respectively. Fork = 2, components lie on a tilted plane. This changes into a quadratic surface fork = 3. With
3 representing the true number of ‘traits’, surfaces fork = 4,5 (not shown) and 6 are little different, except for
more ‘wiggles’ depicting increased sampling variation.
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Figure 1. Covari-
ance matrices for different orders of fit.



Extension to other models.While described above for the simplest case of a basic animal model without
missing records, the procedure is readily applicable to more general cases, e.g. models including additional
random effects and data with few ages recorded for each individual. Other assumptions about the structure of
Σε and multivariate CFs can be accommodated (Meyer and Hill, 1996).

DISCUSSION
The covariance function model provides a useful alternative to the analyses of repeated records used to date.
CFs enable us to model our data with the least number of parameters necessary, avoiding problems associated
with overparameterised models. CFs do not require anya priori assumptions about the number of different
‘traits’ represented by a series of measurements or the shape of trends. Eigenvalues and -functions of CFs have
an interpretation of their own. On the genetic level, they give the directions in which mean growth trajectories
are likely to change under selection. Potentially these could be used to characterise differences between breeds
for sequentially measured ‘traits’ such as growth. CFs can readily be estimated by REML. This involves only
a simple reparameterisation of existing procedures to estimate covariance components.

Random regressions.An equivalent model to the CF model is a random regression model with covariables
equal to orthogonal polynomials of age at recording. This implies fittingkA genetic andkR permanent environ-
mental random regression coefficients for each animal. These replace the respective random effects (t each) in
(2). The covariances between the regression coefficients are equal to the coefficients of the CFs (elementsKi j ),
and can be estimated in a corresponding REML analysis. Moreover, thekA genetic regression coefficients fully
describe the generit merit of an animal for the ‘trait(s)’ recorded over a period of time, i.e. this approach can
reduce the number of breeding values (EBVs) to be estimated and thus simplify selection decision, especially
for ‘traits’ like growth where a range of EBVs for points along the growth curve (like birth, weaning, yearling,
final and mature weight in beef cattle) is replaced by estimates of genetic regression coefficients describing
the complete growth curve.
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