Estimates of parameters for scan records of Australian beef cattle treating records on males and females as different traits

> Karin Meyer & Hans-Ulrich Graser Animal Genetics and Breeding Unit University of New England Armidale NSW 2351

Introduction

Distinct differences in growth pattern - bulls grow faster & remain leaner Are traits measured on males & females 'genetically' the same ? - important for traits related to carcass composition - to be treated as different in genetic evaluation? Examine genetic correlation between sexes for ultrasound scan records

Data

Real-time ultrasound scan records taken in the field - accredited scanners -300 to 700 days of age 4 breeds - A : Angus - H : Hereford - PH : Polled Hereford - SG : Santa Gertrudis

Traits

P8 : P8 fat depth (mm) RIB : fat depth at 12th/13th rib (mm) EMA : eye muscle area (cm²) **SWT** : scanning weight (kg)

No. of records (EMA)

Angus Hereford Polled Santa Hereford Gertrudis

H/S 14,124 10,499 4385 3165

18,583 15,064 4824 3547

B

Means & standard deviations -2P8 (mm)RIB (mm)

Means & no. of records for ages Angus, P8 fat depth

Analysis

9

Bivariate REML analyses - treat records on heifers+steers & bulls as two separate traits - no error covariance Fixed effects herd-date of scanning-management group subclasses (contemporary groups) - 60 day 'age slicing' within CG - birth type (single vs twin)

Analysis - continued

- 'heifer factor' dam age class (<29, 29+ mon)</p> - dam age linear & quadratic age at scanning covariables Random effects - animals' additive genetic effects include pedigree information - sire x herd interaction

Phenotypic variances

Distinct differences between sexes & breeds (SG) – largely attributable to scale effects CVs for a trait similar across sexes & breeds CVs highest for SG Fat depths highly variable - CV : 32-46% EMA & SWT less variable -CV: 7-11%

CV (%) - fat depth								
		A	Н	PH	SG			
P8	H/S	34.4	35.3	33.7	38.0			
	B	38.2	36.0	34.3	45.9			
RIB	H/S	31.7	31.7	31.3	37.5			
	B	33.0	30.5	30.1	37.7			

CV (%) - other traits								
	A	Н	PH	SG				
EMA H/S B	9.6 8.9	10.9 9.4	10.6 9.1	9.2 8.7				
SWT H/S	7.8	8.6	8.3	8.5				
B	7.3	7.7	7.4	8.7				

Results -1

Heritabilities for fat depth consistently higher in heifers/steers than in bulls - P8: 0.38 vs 0.24 **Average over** - RIB: 0.30 vs 0.19 breeds Less consistent results for other traits - EMA : 0.29 vs 0.23 - SWT : 0.37 vs 0.32 Problems : records for SG bulls

Genetic correlation between sexes

Results -2

Genetic correlation between sexes - close to unity for 'size' traits **SWT** : 0.93 Average over breeds EMA : 0.92 -considerably lower for fat depths **P8**:0.69 **RIB** : 0.77

Conclusions

- Fat depth measurements on females more informative than on males
 - higher mean (at same age)
 - more variable
 - more heritable
- Scan males at sufficient fat level to ensure genetic variability is expressed – older ages

Conclusions - continued

 Treat fat depth measurements on males & females (+steers) as different traits
– now implemented in BREEDPLAN

