Estimates of genetic parameters for scan measurements in Australian Brahman and Santa Gertrudis adjusting for age versus adjusting for weight at scanning

Karin Meyer

Animal Genetics and Breeding Unit, University of New England, Armidale, NSW 2351
Introduction

- Scan records taken in the field provide information for BREEDPLAN carcass EBVs
 - adjusted to common market weight
- Should scan records be adjusted to common age or common weight?
 - effects on genetic parameters?
Data

- Field ultrasound scan records (up to 9/96)
- Breeds
 - Santa Gertrudis (N=5587)
 - Brahman (N=3634)
- Traits
 - P8 fat depth (mm)
 - Fat depth at 12th/13th rib (mm)
 - Eye muscle area (cm²)
 - Weight at scanning (kg)
Adjustment of records

- Account for age within model of analysis
 - fit linear & quadratic covariable (within sex)
- Pre-adjust to mean age
 - X-intercept approach
- Pre-adjust to mean weight
 - Calculate predicted age at mean weight
 - X-intercept adjustment using predicted age
Adjusting to common age

Mean trait

Adjusted trait

X-intercept

Mean age

Estimated regression of trait on age

Observed trait

‘Observed’ age
Adjust to common weight: Step 1
Adjust to common weight: Step 2

Mean trait

Adjusted trait

X-intercept

Mean age

Observed trait

Predicted age at mean weight

age

age*
Notation

- No superscript :
 - unadjusted trait

- Superscript “+” :
 - trait pre-adjusted to mean age

- Superscript “*”
 - trait pre-adjusted to mean weight
Effect of adjustments
(P8, 600 days, Santa Gertrudis)

- Adjust to mean age
 - little effect on mean & sd of trait
- Adjust to mean weight
 - slight ↓ in mean
 - bigger ↓ in sd of trait
 - ↑ in mean age*
 - ↑ ↑ in sd age*
Analyses

- REML analyses - simple animal model
 - univariate & fourvariate
- Fixed effects
 - contemporary groups
 - “heifer factor” (heifer vs cow)
 - Dam age - linear & quadratic covariable
 - Age at scanning - linear & quadratic cov.
 - unadjusted records only → supply estimates of regression on age
No. of records

<table>
<thead>
<tr>
<th></th>
<th>400 d</th>
<th>600 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Gertrudis</td>
<td>1152-1230</td>
<td>3684-3688</td>
</tr>
<tr>
<td>Brahman</td>
<td>745-791</td>
<td>2177-2303</td>
</tr>
</tbody>
</table>
P8 fat depth

Santa Gertrudis

Brahman

Variance

Heritability

400 days

600 days

400 days

600 days

P8
P8+
P8*
RIB fat depth

Santa Gertrudis

Brahman

Variance

Heritability

400 days 600 days

400 days 600 days

RIB
RIB+
RIB*

Legend:

- RIB
- RIB+
- RIB*
Eye muscle area

Santa Gertrudis

Brahman

Variance

Heritability

EMA
EMA+
EMA*

400 days
600 days

400 days
600 days
Results - 1

- Heritabilities
 - similar magnitude than in *bos taurus*
 - higher for scanning at later ages

- Adjusting to common weight tended
 - to reduce phenotypic variance (EMA*, RIB*)
 - to increase heritabilities
 - produce predicted ages with much larger ranges & variances than observed ages

- Similar results for pre-adjustment for age & adjustment within model of analysis
Estimates of correlations -1
600 days

Santa Gertrudis

Brahman

Genetic

Phenotypic

Original scale
P8*, RIB*, EMA*
Estimates of correlations -2

600 days

Santa Gertrudis

Brahman

Genetic

Phenotypic

SWT,P8 SWT,RIB SWT,EMA SWT,P8 SWT,RIB SWT,EMA

Original Scale
P8*, RIB*, EMA*
Results -2

● Correlation estimates
 ● high r (P8, RIB)
 ● moderate r (SWT, EMA)
 ● low r otherwise

● Adjusting to common weight changes correlation structure
 ● no change r (P8, RIB)
 ● slight \downarrow r (EMA, fat depth)
 ● $\downarrow \downarrow$ r (SWT, scan traits)
Conclusions

- Adjusting scan records to common weight rather than age increases heritabilities.
- But: correlations with scanning weight are reduced/close to zero.
 - Implications for genetic evaluation when most animals have weight records only & obtain EBVs for carcass traits through correlated information?