Estimates of genetic correlations between pelvic measurements and calving ease for Australian Angus

Karin Meyer & Hans-Ulrich Graser

Animal Genetics and Breeding Unit, University of New England, Armidale, NSW 2351

Introduction

Calving difficulties : discrepancies size & shape of calf size & shape of pelvic opening of dam Pelvic measurements useful to reduce incidence of difficult calvings? Auxiliary selection criterion ? heritability & variability genetic correlation with calving ease

Data

Pelvic measurements taken in 'validation herds' 1991-1994 ▶ 300 to 700 days of age **Rice pelvimeter** internal measurement invasive procedure Rice Pelvimeter Earlier results (Bunter & Upton 1995) PM moderately to highly heritable strong, positive genetic correlation between PM on males & females

Data - 2

 Need records on calving performance of heifers measured to assess correlation with calving ease

 now available

 Calving ease scores (1-5)

21,191 Angus calves born 1989-96

Iow incidence of difficult calvings

1.85% of birth "assisted" (2)

0.76% of birth "difficult" (3)

6 births "veterinary assistance" (4)

Traits

Measured on heifers **PH** : pelvic height (cm) **PW** : pelvic width (cm) **PA** : pelvic area (cm²) **HH** : hip height (cm) Treated as trait of the calf **CE** : calving ease (score 1-5)

No. of records - PM

Means - PM

CE : Univariate analyses REML, animal model pedigree info up to 2 generations back examine importance of maternal eff.s **genetic** permanent environmental Fixed effects contemporary groups "heifer factor" (age of dam class) dam age as linear & quadratic covariable

CE: Univ. analyses - 2

Treat CE

as continuous traitas trait of the calf born

CE : Results

Model fitting genetic & p.e. maternal effects assuming r_{AM}≠0 fitted best $h^2 = 0.05$ Direct heritability $m^2 = 0.04$ Maternal heritability Permanent environmental maternal effect $c^2 = 0.33$ Direct-maternal genetic correlation $r_{AM} = -0.47$ antagonistic relationship plausible (size) \checkmark some \checkmark bias ?

CE + PM : Bivariate analyses

- PM : Fit direct genetic effects only
 CE : Fit
- direct & maternal genetic effects
 maternal perm. environmental effects
 Estimate correlations CE & PM
 direct genetic correlation
 direct-maternal genetic correlation
 residual

CE + PM : Estimates -1

Direct heritability estimates for PM

CE + PM : Estimates -2 Direct genetic correlations

¹⁵ CE + PM : Estimates -3

Correlations between direct effects for PM & maternal effects for CE

Results

Low correlations for records at 400 d Records at 600 d : Low to moderate, antagonistic direct genetic correlations (0.2 to 0.6) calves with larger PM tend to have more difficult birth Low, favourable direct-maternal genetic correlations (-0.3 to -0.5) cows with larger PM tend to have calves born with lower CE scores

Conclusions

PM can assist in selection against calving difficulties But : Invasive procedure Correlations are low ! different for breeds with higher incidence of calving difficulties ? **Recommend**: selection based on EBVs for CE, BW & GL

17