Estimates of genetic correlations between pelvic measurements and calving ease for Australian Angus

Karin Meyer & Hans-Ulrich Graser

Animal Genetics and Breeding Unit, University of New England, Armidale, NSW 2351
Introduction

- Calving difficulties: discrepancies
 - size & shape of calf
 - size & shape of pelvic opening of dam
- Pelvic measurements useful to reduce incidence of difficult calvings?
- Auxiliary selection criterion?
 - heritability & variability
 - genetic correlation with calving ease
Data

- 300 to 700 days of age
- Rice pelvimeter
 - internal measurement
 - invasive procedure

Earlier results (Bunter & Upton 1995)
- PM moderately to highly heritable
- strong, positive genetic correlation between PM on males & females
Data - 2

- Need records on calving performance of heifers measured to assess correlation with calving ease
 - now available

- Calving ease scores (1-5)
 - 21,191 Angus calves born 1989-96
 - low incidence of difficult calvings
 - 1.85% of birth “assisted” (2)
 - 0.76% of birth “difficult” (3)
 - 6 births “veterinary assistance” (4)
Traits

- Measured on heifers
 - PH: pelvic height (cm)
 - PW: pelvic width (cm)
 - PA: pelvic area (cm2)
 - HH: hip height (cm)
- Treated as trait of the calf
 - CE: calving ease (score 1-5)
No. of records - PM

<table>
<thead>
<tr>
<th></th>
<th>400 d</th>
<th>600 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH, PW, PA</td>
<td>6034</td>
<td>1952</td>
</tr>
<tr>
<td>with CE score</td>
<td>3952</td>
<td>943</td>
</tr>
<tr>
<td></td>
<td>PH</td>
<td>PW</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>400 d</td>
<td>14.4</td>
<td>12.1</td>
</tr>
<tr>
<td>600 d</td>
<td>16.0</td>
<td>13.5</td>
</tr>
</tbody>
</table>
CE : Univariate analyses

- REML, animal model
 - pedigree info up to 2 generations back
- examine importance of maternal eff.s
 - genetic
 - permanent environmental
- Fixed effects
 - contemporary groups
 - “heifer factor” (age of dam class)
 - dam age as linear & quadratic covariable
Treat CE
- as continuous trait
- as trait of the calf born

\[P_{CE} \quad h^2 \quad A_{calf} \]

\[c^2 \quad m^2 \quad r_{AM} \]

\[C_{dam} \quad M_{dam} \quad A_{dam} \]

1/2
CE : Results

- Model fitting genetic & p.e. maternal effects assuming $r_{AM} \neq 0$ fitted best
 - Direct heritability $h^2 = 0.05$
 - Maternal heritability $m^2 = 0.04$
 - Permanent environmental maternal effect $c^2 = 0.33$
 - Direct-maternal genetic correlation $r_{AM} = -0.47$
 - Antagonistic relationship plausible (size)
 - Some bias?
CE + PM: Bivariate analyses

- PM: Fit direct genetic effects only
- CE: Fit
 - direct & maternal genetic effects
 - maternal perm. environmental effects

Estimate correlations CE & PM
- direct genetic correlation
- direct-maternal genetic correlation
- residual
Direct heritability estimates for PM
CE + PM: Estimates -2

Direct genetic correlations

- PH
- PW
- PA
- HH

400 d
600 d
Correlations between direct effects for PM & maternal effects for CE
Results

- Low correlations for records at 400 d

- Records at 600 d:
 - Low to moderate, antagonistic direct genetic correlations (0.2 to 0.6)
 - calves with larger PM tend to have more difficult birth
 - Low, favourable direct-maternal genetic correlations (-0.3 to -0.5)
 - cows with larger PM tend to have calves born with lower CE scores
Conclusions

- PM *can* assist in selection against calving difficulties ...
- But:
 - Invasive procedure
 - Correlations are low!
 - different for breeds with higher incidence of calving difficulties?
- Recommend:
 - selection based on EBVs for CE, BW & GL