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SUMMARY
Approximate prediction error covariances among estimates of random regression coefficients for direct
genetic effects were obtained for two beef cattle data sets using an extension of the method ofGraser
and Tier(1997). From these, approximate accuracies of breeding value estimates for birth, 200 day,
400 day and 600 day weight were calculated. Corresponding ’exact’ values were determined from the
inverse of the coefficient matrix in the mixed model equations (MME), estimating the diagonal blocks
of the inverse pertaining to random regression coefficients using Gibbs sampling. Approximate and
’exact’ values were contrasted with empirical accuracies, obtained as correlations between true and
estimated genetic values in a simulation study. Results showed good agreement between approximate
and ’exact’ values.
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INTRODUCTION
Calculation of accuracies of estimated breeding values (EBV) forms an integral part of genetic eval-
uation schemes. Whilst ’exact’ values could be obtained from the inverse of the coefficient matrix in
the mixed model equations, computational requirements for this are generally prohibitive and approx-
imations are used in practice. This paper examines accuracies of EBVs for growth traits of beef cattle
from a random regression (RR) model analysis, using a new approximation procedure which provides
both sampling variances and covariances among estimated genetic effects. Approximate, ’exact’ and
empirical acuuracies are contrasted for two small data sets.

MATERIAL AND METHODS
Table 1. Data structure

Number of Wokalup Hereford

records 75,829 44,328
animals 7,305 12,839
parents 1,138 9,831
cont.groups 11,417 5,682

Data. Records for weights of beef cattle from birth to 730 days
of age were considered. The first data set comprised weights for
animals in two herds in the Wokalup selection experiment, which
involved monthly weight recording, yielding up to 26 records per
animal. The second data set consisted of weights in 16 Hereford
herds, in which at least 50% of animals had four or more weights
recorded. To investigate the effect of limited numbers of records
on the approximation of accuracies, this data set was analysed as
is and expanded to twice its size, by adding a ficticious record, assumed to be taken about 100 days
later, for each record in the data; seeMeyer(2003) for details. Characteristics of the data structure are
summarised in Table 1.

Model. The model of analysis fitted a cubic, RR on Legendre polynomials (LP) of age at recording
for direct genetic, maternal genetic, direct permanent environmental and maternal permanent environ-
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mental effects. Variances among RR coefficients and heterogeneous measurement error variances were
assumed to be given by estimates for Hereford cattle obtained byMeyer (2002). Fixed effects fitted
were contemporary groups (CG) and a quartic regression on LP of age, with CG defined as herd-sex-
management group-year/month of weighing subclasses for birth weights, and herd-sex-management
group-date of weighing subclasses otherwise. For the Hereford data, CG were divided further by ap-
plying an “age slicing” of 45 days up to 300 days, and 60 days for higher ages.

Approximation. A full description of the approximation procedure used is beyond the scope of this
paper, and will be published elsewhere. The algorithm is similar to other methods of approximation,
in that the informative value of data arising from an individual’s own observations is combined with
that from close relatives. It differs from methods proposed, for instance, byGraser and Tier(1997) or
Jamroziket al. (2000) by not converting these values into “equivalent progeny numbers” on a single
trait basis, but retaining them as multiple trait values, so that prediction error covariances can be derived
in addition to variances.

Inverse. The diagonal blocks of the inverse of the coefficient matrix in the MME pertaining to sets
of RR coefficients for direct genetic effects, were estimated for each data set using a Gibbs sampling
algorithm as described byHarville (1999). A total of 400,000 samples were drawn, discarding the first
20,000 samples as burn in.

Simulation. Empirical accuracies for the data sets considered were available from a simulation study,
which calculated accuracy as the correlation between true and estimated breeding value across all ani-
mals. Results given are means and standard deviations for 800 replicates (Meyer, 2003).

Criteria. Prediction error variances (PEV) of estimated RR coefficients were obtained as diagonal
elements of the animal blocks in the inverse coefficient matrix, or their approximations. The accuracy
for a coefficient was calculated asρi j =

√

(1−PEVi j /Vari), with Vari the genetic variance for thei−th
coefficient (i = 0,1,2,3 for intercept, linear, quadratic and cubic), andPEVi j the estimated PEV for the
i−th coefficient andj−th animal.

Under a RR model, EBVs for specific ages can be obtained by evaluating the estimated regression
for the ages desired. Whilst this is a polynomial function of age, it is linear in the estimated RR
coefficients. Hence, corresponding prediction error variances (PEVk j) of EBVs at agesk = 0,200,400
and 600 days were obtained from the estimated covariances among RR coefficients, as the variance of a
linear function, and accuracies calculated asρk j =

√

(1−PEVk j/Vark), with Vark the genetic variance
for agek. A second approximate accuracy for EBVs was obtained using the procedure described by
Jamroziket al. (2000).

For a small number of animals, PEVs estimated from the inverse coefficient matrix were larger than
the corresponding genetic variance. Hence, the average ofρi j andρk j was determined omitting these

animals. In addition, a corresponding average accuracy was calculated asρ∗m =
√

(1−PEVm./Varm),
with m= i,k andPEVm. the average PEV for them−th coefficient or EBV across all animals. Regres-
sions of accuracies from the inverse coefficient matrix on their approximations and their coefficients of
determination (R2) were calculated.

RESULTS AND DISCUSSION
Average accuracies of estimated RR coefficients are given in Table 2. Valuesρ∗i derived fromPEVi. for



Table 2. Average accuracy of estimates of genetic random regression coefficientsA from simula-
tion, the inverse of the coefficient matrix and from approximate method

Wokalup Hereford Hereford×2

Coeff. 0 1 2 3 0 1 2 3 0 1 2 3

Simulation
Mean 0.617 0.586 0.486 0.465 0.531 0.495 0.329 0.306 0.555 0.543 0.440 0.409
s.d. 0.018 0.021 0.028 0.028 0.019 0.021 0.037 0.035 0.018 0.019 0.026 0.026
Accuracy from mean prediction error variance
Inverse 0.618 0.585 0.483 0.462 0.530 0.491 0.312 0.291 0.555 0.540 0.435 0.403
Approx. 0.615 0.582 0.494 0.478 0.550 0.513 0.359 0.341 0.571 0.558 0.466 0.440
αB

1 0.994 0.977 0.943 0.935 0.940 0.928 0.814 0.785 0.952 0.939 0.887 0.865
R2 (%)D 96.0 95.7 95.4 95.7 95.5 94.0 80.0 80.1 96.3 96.1 93.9 93.4
Accuracy for individuals
Inverse 0.602 0.567 0.470 0.449 0.522 0.487 0.321 0.296 0.544 0.532 0.427 0.393
Approx. 0.596 0.559 0.464 0.449 0.530 0.496 0.348 0.329 0.549 0.537 0.446 0.420
βC

1 1.005 1.004 0.985 0.977 0.866 0.842 0.715 0.714 0.876 0.861 0.832 0.829
R2 (%) 95.7 94.4 93.9 94.7 93.7 91.5 76.9 77.8 94.7 94.0 91.4 91.2

A 0: intercept, 1: linear, 2: quadratic, 3: cubic;B regression of reliability from inverse on approximation,C asB but for accuracy,
D coefficient of determination forβ

the direct inverse showed excellent agreement with empirical results. Averageρi j (ρi.) from the inverse
for the subset of animals withPEVi j ≤Vari were consistently slightly less than empirical means, but
deviations were well within the range of standard deviations. This implies that, in spite of yielding over-
estimates of PEVS for some animals, the inverse derived by Gibbs sampling provided good estimates
of ’exact’ accuracies.

In turn, ρ∗i and ρi. derived from the approximated prediction error covariances agreed closely with
their counterparts from the inverse coefficient matrix. R2s for the regression of ’exact’ on approximate
accuracies were up to 96%. With regression coefficients close to unity, agreement was best for the
Wokalup data set with a high number of records per animal. Conversely, discrepancies were largest and
R2s lowest for quadratic and cubic coefficients for the Hereford data set in which 45% of animals had
less than 4 records, the number required to fit a cubic polynomial accurately. Expanding the data set to
twice its size reduced this proportion to 7.5% and improved the quality of approximation of accuracies.

Corresponding results for accuracies of EBVs for 0, 200, 400 and 600 days of age, summarised in
Table 3, exhibited a very similar pattern. Excellent agreement between values from the inverse coef-
ficient matrix and our approximation implies that not only PEV of RR coefficients but also prediction
error covariances among them have been approximated correctly. Approximate values derived using
Jamroziket al. (2000)’s procedure tended to be slightly higher than accuracies from our method of
approximation, but had similar R2s.

CONCLUSIONS
Accuracies of genetic evaluation under a RR model can be approximated satisfactorily for the data



Table 3. Average accuracy of breeding value estimates at selected ages (in days) from simula-
tion, the inverse of the coefficient matrix, from approximate method andJamrozik et al. (2000)’s
procedure

Wokalup Hereford Hereford×2

Age 0 200 400 600 0 200 400 600 0 200 400 600

Simulation
Mean 0.639 0.583 0.600 0.613 0.531 0.493 0.522 0.535 0.533 0.506 0.538 0.558
s.d. 0.017 0.020 0.018 0.018 0.020 0.023 0.020 0.019 0.020 0.022 0.019 0.018
Accuracy from mean prediction error variance
Inverse 0.641 0.587 0.603 0.614 0.526 0.492 0.520 0.534 0.530 0.506 0.538 0.557
Approx. 0.660 0.585 0.600 0.610 0.550 0.516 0.541 0.553 0.553 0.526 0.554 0.573
αA

1 0.931 1.008 0.998 0.992 0.928 0.922 0.935 0.942 0.931 0.941 0.950 0.953
R2 (%)E 96.8 95.5 96.6 96.5 97.3 95.5 96.9 95.8 97.4 95.8 96.4 96.5
Jamrozik 0.673 0.614 0.621 0.630 0.566 0.544 0.560 0.569 0.570 0.553 0.571 0.586
αB

2 0.894 0.903 0.944 0.956 0.887 0.827 0.874 0.894 0.890 0.849 0.893 0.911
R2 (%) 97.3 96.4 97.4 97.3 97.2 95.3 95.9 95.7 97.3 95.7 96.4 96.6
Accuracy for individuals
Inverse 0.629 0.571 0.586 0.597 0.511 0.480 0.509 0.525 0.514 0.492 0.524 0.546
Approx. 0.648 0.571 0.584 0.594 0.533 0.495 0.520 0.533 0.534 0.503 0.530 0.550
βC

1 0.963 1.016 1.004 1.000 0.941 0.875 0.878 0.871 0.941 0.887 0.888 0.879
R2 (%) 97.2 95.9 96.6 96.1 97.1 94.4 94.6 94.0 97.2 94.8 95.2 95.0
Jamrozik 0.660 0.597 0.603 0.612 0.548 0.521 0.537 0.548 0.550 0.528 0.546 0.563
βD

2 0.916 0.927 0.951 0.958 0.914 0.826 0.846 0.845 0.913 0.840 0.858 0.856
R2 (%) 97.5 96.6 97.1 96.6 96.9 94.3 94.6 93.9 97.0 94.7 95.3 95.0

A regression of reliability from inverse on approximation,B regression of reliability from inverse on Jamrozik’s approximation,
C asA but for accuracy,D asB but for accuracy,E coefficient of determination

structure typical for beef cattle. The approximation used is computationally undemanding and appli-
cable to large scale problems. The ability to approximate prediction error covariances is valuable not
only in a RR situation, but will facilitate approximation of accuracies of genetic indexes composed of
multi-trait EBVs.
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