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SUMMARY
A simulation study investigating relative errors and sampling variances of reduced rank estimates of
genetic covariance functions from random regression analyses estimating the leading principal com-
ponents only, is presented. The example considered pertains to covariance functions for growth of
beef cattle. It is demonstrated that the leading principal components are estimated most accurately,
and that reduced rank estimates yield estimates of covariance functions with similar errors than full
rank estimates. Furthermore, it is shown that substantial repartitioning between genetic and permanent
environmental covariances can occur if either is modelled with too few principal components. Results
emphasize the need for a judicious choice among the possible combinations of rank of fit for different
covariance functions.
Keywords : Reduced rank, sampling variances, bias, random regression, covariance function

INTRODUCTION
Reduced rank estimation via the leading genetic principal components has been proposed for analyses
involving multiple, possibly highly correlated genetic effects (Kirkpatrick and Meyer 2004). This can
reduce the number of parameters to be estimated, and yield more accurate estimates. A typical appli-
cation are random regression (RR) analyses, which model trajectories through sets of correlated RR
coefficients specific to each individual. Simulation studies have shown reduced rank estimation to be
advantageous for such analyses (James et al. 2000; Kirkpatrick and Meyer 2004; Meyer and Kirkpatrick
2005), but have considered a single source of variation only. In practice, we have repeated records per
individual and need to estimate both genetic and permanent environmental effects of the animal and
their covariance functions. Depending on the numbers of principal components (PC) fitted for each
effect, this can lead to a repartitioning of variation. This paper presents a simulation study investigating
biasses and sampling variances for reduced rank estimates of two covariance functions (CF) fitted to
model growth of beef cattle.

MATERIAL AND METHODS
Population values for the simulation were estimates of genetic and permanent environmental CFs and
temporary environmental variances for growth of beef cattle from birth to 820 days of age, obtained
by Meyer (2005). CF estimates were obtained fitting RRs on quadratic B-spline functions of age at
recording with knots at 0, 160, 320, 480, 640 and 821 days. This yielded 7 RR coefficients and, at
full rank, 28 covariances among RR coefficients for each CF. Temporary environmental variances were
considered independently distributed with changes in variance with age modelled by a step function
with 18 classes (0, 61− 90, 91− 120, . . ., 271− 300, 301− 360, . . ., 721− 780 and 781− 820 days).
Matrices of crossproducts were sampled from a Wishart distribution assuming a simple balanced half-
sib design, consisting of 1000 unrelated sires with 8 progeny each, and 7 records per progeny, i.e.,
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56,000 records in total. The first record for each animal was assumed to be taken at the lowest age,
corresponding to a birth weight. The remaining 6 records were distributed at equal intervals of 126
days, but staggered evenly within each progeny group, with ages for the second record from 61 to
188 days and ages for the last record from 694 to 820 days for progeny 1 to 8, respectively. All
progeny groups were assumed to have the same age structure, resulting in a total of 48 different ages
at recording. No fixed effects were simulated. Let M denote the sample of cross-products, V the
covariance matrix for observations on a progeny group, and s the number of groups. With unrelated
families of the same structure, the likelihood is−2logL = const.+s log |V|+ tr

(

V−1M
)

and is readily
maximised (Thompson 1976). Estimates of CFs and temporary environmental variances were obtained
by maximum likelihood, considering the first m = 1, . . . ,7 genetic PCs. Permanent environmental CFs
were, in turn, fitted : a) considering m PCs as for the genetic CF (“Equal”), b) considering m + 1 ≤ 7
PCs (“Plus 1”), and c) fitting all 7 PCs (“Full”). Additional simulations were carried out assuming
only genetic or permanent environmental variances affected observations. Accuracy of estimates was
measured as relative error for eigenvalues λi and the genetic CF, G evaluated by numerical integration.
Relative errors (RE) in genetic eigenfunctions, ei, were measured as the angle between ‘true’ and
estimated eigenfunctions; see Kirkpatrick and Meyer (2004).
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where ‘.̂’ denotes an estimate, ‖.‖ is the vector norm, G (r,s) is the genetic covariance between ages r
and s, and n = 101 is the grid size used for numerical evaluation of the genetic CF and its eigenfunctions.
A total of 4000 replicates were simulated for each scenario.

RESULTS AND DISCUSSION
Average (log) likelihood (logL ) values and corresponding Bayesian Information Criteria (BIC) for
the different analyses are summarised in Table 1. As commonly found, logL favoured more detailed
models, increasing significantly until at least 6 genetic PCs were fitted. Involving a stringent penalty for
the number of parameters, BIC was lowest for a model fitting 4 genetic PCs, provided the permanent
environmental CF was estimated involving at least one more PC than for the genetic CF (“Plus 1” or
“Full”).
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Figure 1. Relative error in estimates of genetic eigenvalues (top) from analyses fitting m genetic
principal components (Fm), together with root means square errors (bottom); both in %
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Figure 2. Relative error in estimates of permanent environmental eigenvalues (in %).

Table 1. Log likelihood (logL )A and corresponding
Bayesian Information Criteria (BIC)

“Full” “Plus 1” “Equal”

Fit pB logL BIC p logL BIC p logL BIC

1 53 -188.0 955.4 38 -867.0 2149.4 32 -1764.3 3878.5
2 59 -103.4 851.9 49 -272.6 1080.9 44 -507.5 1496.0
3 64 -52.7 805.2 58 -93.2 820.6 54 -163.3 917.1
4 68 -21.6 786.7 65 -33.8 778.2 62 -55.5 788.8
5 71 -8.1 792.4 70 -10.4 786.0 68 -19.7 782.9
6 73 -2.9 804.0 73 -2.5 803.1 72 -6.3 799.7
7 74 -1.6 812.3 74 -1.2 811.5 74 -2.3 813.6
A +175,200, B Number of parameters to be estimated

Relative errors in estimates of genetic
eigenvalues and square root values
of corresponding mean square errors
(RMSE) across replicates are shown
in Figure 1. Results are grouped ac-
cording to eigenvalues, i.e., for each
of the four analyses there are the 7
estimates of the first eigenvalue, λ1,
from analyses fitting 1, . . . ,7 PCs (F1,
. . . , F7), followed by the 6 estimates
for λ2 from analyses F2 to F7, and so
forth till the single estimate of λ7 from
F7. In the absence of permanent en-
vironmental effects or when fitting all
PCs (“Full”) for the corresponding CF

(P), λ1 was estimated accurately, regardless of the number of genetic PCs fitted. Subsequent λi
(i = 2, . . . ,7) tended to be estimated with large relative errors, especially if they were the last PC fitted
(i.e., λi obtained from Fi). Population eigenvalues were 944.7, 51.9, 16.1, 9.5, 5.9, 3.2 and 0.2 for
G , and 638.3, 85.2, 63.3, 43.8, 14.9, 7.3 and 0.2 for P , i.e., relative importance of PCs tailed off
considerably slower for permanent environmental than for genetic effects.

As illustrated in Figure 2, this resulted in substantial downward biasses in estimates of the first eigen-
value of P if less than 4 permanent environmental PCs were fitted. This caused some of the permanent
environmental variance to be partitioned into the genetic components, causing marked upwards biasses,
especially in λ1 (see Figure 1). Relative errors in estimates of λ4 to λ7 differed little between analyses,
suggesting that errors were not attributable to repartitioning of permanent environmental variation.

In addition, temporary environmental variances (not shown) tended to ‘pick up’ some of the unex-
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Figure 3. Error in estimates of genetic eigenfunctions (in degrees).
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Figure 4. Relative error in estimates of genetic covariance function (in %)

plained variation when reduced numbers of PCs were fitted. RMSE errors were of similar magnitude
than relative errors, indicating that a large proportion reflected bias rather than sampling variation. Sim-
ulating a sizable, well structured data set, no ‘intermediate optimum’ in RMSE, as might be expected,
was apparent, i.e., additional sampling variances due to an increase in the number of parameters to be
estimated were small enough as not to outweigh the reduction in bias with increasing number of PCs
considered. This may be different for smaller or less well structured data sets (Kirkpatrick and Meyer
2004).

Errors in estimates of genetic eigenfunctions are shown in Figure 3. Whilst estimates of the first ge-
netic eigenvalue were biassed when permanent environmental effects were modelled by too few PCs,
the corresponding estimates of the first genetic eigenfunction were little affected, i.e., repartitioning
between CFs affected the estimates of the amount of variation rather than the estimates of the direction
of the first PC. As for eigenvalues, subsequent eigenfunctions ei were estimated with large errors when
they pertained to the last PC fitted (m = i). At full rank (F7), average deviations in estimates of ei
tended to increase with i, i.e., while the first and second eigenfunction could be estimated accurately,
subsequent eigenfunctions tended to be subject to substantial errors. Fortunately, the latter explained
little variation, so that estimates of the genetic CF G were dominated by the first two PCs, and rela-
tively little affected. This is illustrated in Figure 4, which shows relative errors in estimates of G . Here
‘Fi− j denotes an analysis fitting i genetic PCs, but considering the first j ≤ i PCs only in constructing
Ĝ = ∑ j

r=1 λ̂r ê′r êr. As indicated by the BIC (see Table 1), there were only small reductions in error for
analyses fitting more PCs over that for an analysis fitting 4 genetic and 5 permanent environmental PCs.

CONCLUSIONS
Reduced rank estimation of CFs in RR analyses can yield highly parsimonious models, at negible
loss in accuracy. As shown, estimates of CFs are dominated by the leading PCs which are estimated
accurately, provided all sources of variation are modelled adequately. Subsequent PCs, contributing
little variation, cannot be estimated reliably. The observed repartitioning between sources of variation
emphasizes the need to choose the combination of numbers of PCs fitted for all CFs modelled carefully.
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