Approximate prediction error individual EBVs as well as PEVs. This paper describes
covariances among mu|tip|e a simple method to approximate both PEVs and PECs

estimated breeding values for simultaneously, developed by Tier and Meyer (2003),
individuals extending the widely used method of equivalent num-

ber of progeny (ENP) from a single number to a matrix
of values for each individual. Examples of approximate
reliabilities of linear functions of EBVs for multi-trait
and RR models are given and contrasted to theoretical
values and simulation results.

METHOD
Prediction error (co)variances between effects in a lin-

INTRODUCTION _ , ear mixed model are given by the corresponding ele-
Today's genetic evaluation schemes involve modelgnis of the inverse of the coefficient matrix in the

comprising multiple, correlated additiye g_enetic effeq{ve. denoted byC. Approximation methods available
for each animal. These can be multi-trait (MT) moghs generally attempt to adjust diagonal elements of
els or random regression (RR) models which mogg} «jinks’ with other effects in the model, so that recip-
trajectories in traits recorded repeatedly per animgtas of the adjusted diagonals closely resemble the di-
through a set of RR coefficients. Often we are igyona| elements & 1. Early methods to approximate
terested in linear functions of the resulting breedipy/s for single trait analyses first adjusted diagonals
value (EBV) estimates. These may be selection indeyggnimals with records for limited subclass sizes, then
combining EBVs for individual traits. For instance,ccymulated adjustments to parents’ diagonals for lim-
BREEDPLAN, the Australian genetic evalua}tlon schem®q information on their progeny, and finally adjusted
for beef cattle currently c_:onS|ders 22 traits (Johnstg%gonms of progeny for the adjusted diagonals of their
etal, 1999). The companion programRBEDOBJIECT parents, taking care not to double count the animal con-
(Barwick and Henzell, 1998) provides a range of CU§yered (e.g. Meyer, 1989). Principles involved in the
tomised selection indexes from the EBVs generated Qe recent procedures and our method are no differ-
BREEDPLAN. For RR models, estimates of the genetigy; \we need to account for the value of information on
RR coefficients describe the complete trajectory of g&ych animal provided by its own records, its parents and
netic merit for each animal. EBVs for any point on thgher known ancestors, its progeny and further descen-
longitudinal scale can be obtained by evaluating the ggints and any collateral relatives. In contrast to previ-

gression equations. Hence, like selection indexes, SyGR methods, however, we are approximatingktbek
derived point EBVs are linear functions of multiple, €%tiagonal block ofC~1 for each animal, corresponding
timated EBVs which are correlated. to all additive genetic effects fitted.

When comparing EBVS, we are interested not only fify,|ti-trait model. Considek traits with single records
their values but also in how reliable they are. The rellﬁuér trait. Let

bility or accuracy of an EBV depends on its prediction

error variance (PEV) relative to the genetic variancg.= Xb +Za+e (1)

As such, it can be perceived as a statistic summaris- o )

ing the value of the information available in calculafienote the multi-trait animal model, wittthe vector of

ing the EBV. If the inverse of the coefficient matrix i®oservationsb the vector of fixed effectsa the vector

the mixed model equations (MME) is known, PEVs c& additive genetic valueg t_he vector of re5|dual,_ and
be found directly from the diagonal elements of the it andZ the incidence matrices relating observations to
verse. However, direct inversion is generally only fegffects. Assume that all vectors are ordered according
sible for small populations, even if sparse matrix teci§-traits within animal, and let

niques are used. Hence, a variety of methods have b o - 4D

developed for approximating PEVs and the resulting a?@rp(él) —A®Go var(e) = IZ R

curacies, which are suitable for large scale genetic eval-
uation schemes involving millions of animals. whereA is the numerator relationship matri&go and

Little attention has been paid to approximating accuﬁgcagse ;rr']?éﬁ ktrrgimc"egeor]:()gtzgiﬂg ?{;grrzif(:ral rcoo(;/aélt-
cies of linear functions of EBVs. This requires approQ— g raitsy produ

o L - d 'y the direct matrix sumR; is the submatrix of
imation of prediction error covariances (PEC) amor%; fo%thei—th animal obtainedl by deleting rows and

La joint venture with NSW Agriculture columns for missing traits. Assume further that animals
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are ordered from oldest to youngest, i.e. that elemewith W; the submatrix oMW for animali. As above,
of a for parents always precede those of their progengontributions from observations can be discounted us-

Random regression modeWith repeated records pefd Weightswm = (Nm—q)/nm < 1 for them—th record,

animal in a RR model, we need to expand (1) to includdth nm the size of subclass to with thg reco.rd belongs
the permanent environmental (PE) effects andqthe number of ‘repeated’ records it has in that sub-

class, i.e. replacing; in (5) with R¥ = Diag{wm0?}.

y=Xb+Wp+Za+e€' (2) Value of observations on descendantdn the second

with y, b andX as above, and anda the vectors of RR step, we accumulate the values of progeny and.other‘de-
cendants for each animal, processing the pedigree ‘up-

coefficients for animals’ PE and additive genetic effects . )

: « . wards’, i.e. from youngest to oldest. Conceptually, this

respectively, an&* the vector of residuals. Assume : .

. , , _Is obtained by assuming each progeny has only one par-

there arek covariables used to model the animals’ ge- . .

) - . ~2ént known and that this parent has no further informa-
netic effects.W andZ are incidence matrices contain: oo i

an, building the MME for the animal and the parent,

. . . . .. |
Ing c.ovarlables relatmg regression poefflments to .thﬁd then ‘absorbing’ the animal equations into those of
functions of the continuous scale (time) along Whl(f

! . e parent. LeE; denote thek x k block of contribu-

observations have been recorded. Residgglsepre- . - ;
: t|or(1js for animali and p; the number of progeny it has.
sent temporary environmental effects, and are assume
independently distributed with variances,.
. 1 4 b 4
Var(p)=1®Py  Var(e) = Diag{os} Ei = 5651 - éGal(Di +Iz E + 5@51)—1051 (6)
=1

Value of observations for an animal Let Dj, of size
k x k, denote the block representing the contribution Dhis block is accumulated for both sire and dam of an-
records for animal to information on its own EBVs.imal i. As the pedigree is processed ‘upwards’ any

This is derived from the data part of the MME. blocks E; required for progeny of animal have al-

Multi-trait model. With PE due to the animal included®ady been fully determined. (6) is adequate if animal
in the residualDj is simply the submatrix o€ corre- has been directly contrasted to relatively few half-sibs.

sponding to the animal’s genetic effects If the animal’s records were in contemporary groups
which included many of its half-sibs, howevdd; in
Di = Z|R; 1z (3) (6) would give an overestimate of the individual’s con-

_ . . . ~ tribution to its parents. As above, we can discount the
with Z; the submatrix o for thei—th animal. Genetic information required by weighing contributions with a
evaluation models generally include some 'contempgctor determined by the proportion of sibs in a sub-

rary group’ effects among the fixed effects fitted, e @ass; see Tier and Meyer (2003) for details.

herd-test day effects for dairy cattle data. (3) does rf}?atlue of observations on ancestorsFinally, we ac-

account for limited subclass sizes. When individua

has few contemporaries, (3) should be modified to bgumulate_ the values of parents, ancestors and coIIa_Lt-

eral relatives for each animal by processing the pedi-

Di =Z/ (R71-R S HR ) Z4 (4) 9ree from oldest to youngest. However, in the previous
step, the value of descendants for all animals was accu-

where§ is the block ofC pertaining to the contempo-mulated. Hence the blodk; for parentj of animali

rary groups of which animalis a member. This dis-includes the contribution far This has to be removed

counts the value of observations to accommodate fingt to avoid double counting. The adjusted block is

limited number of contrasts between this animal and

others, and is the multi-trait equivalent to replacing“1” =~ 1, 4 _ 4_ 4 -1 3

by (n—1)/nin a univariate, single record scenario (with] = §Go - gGo <—Ei +Fj+ §Go ) Go

n the subclass size).

Random regression modeTo obtain the equivalent inwhereF; is thek x k block for parentj in which con-
the RR model, we need to 'absorb’ animals’ PE effedt#butions from all sources of information has been ac-

into the corresponding genetic effects cumulated. As the pedigree is processed ‘downwards’,
blocksFj have always been finalised when the contribu-
D = Zi'Ri_lzi _ Zi/Ri_lwi (W{erwi + Pal)_l tion of parentj for animali to be calculated. The ‘final’

a1 block F; for an animal is then the sum of blocks for its
WiRi“Zi (5) parents, ‘unadjusted’ for the animal, the block for the
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contribution from its own records, and the blocks for ifble 1. Data structure.

progeny Set | Setll Setlll
t Di No. records 75,829 227,219 47,655
Fi=% Ej+Di+ 3 E (7) Animalsindata 7,305 117,977 28,768
j=1 I=1 ... 1 obs. 800 58,396 17,838
... 20bs. 545 26,840 2,973
wheret; = 0,1, or 2 denotes the number of known par- 3 gps. 158 19,795 7,957
ents for animal. ... 4 obs. 271 10,776 0
Prediction error covariances MatricesT; of approx- ... > 5 obs. 5,931 2,170 0
imate PEV and PEC for thikegenetic values estimated Ancestors 1,138 55,149 21,659
for animali are then obtained as Groups (CG) 11,417 54,263 7,407
T = (Fi+ Go)_l (8) Table 2. Reliabilities (in %) of RR coefficients.

interc. linear quadr. cubic

The approximate reliability of a linear function of esti

mated breeding values for aninias then Data set |
Simulation 382 344 238 21.7
Pi2 =1—k'Tik/k'Gok 9) 'True’ 386 346 238 218
Approximation 37.8 339 244 228
wherek is the vector of index weights or covariablespr o 0.999 0.982 0.954 0.949
evaluated for a given point along the longitudinal scaler?(%) 053 950 946 94.6
APPLICATION Data set Il
Data. Data for RR analyses consisted of weight recordgimulation 265 215 93 87
for beef cattle from birth to 730 days of age. Data sefifue¢’ 280 230 110 105
| comprised records from an experimental herd, weighfipproximation ~ 27.8  22.2 9.7 95
ing animals at monthly intervals. Data set Il were alBT.A 0.956 0.950 0.939 0.906
records available for Australian Murray Grey cattleR%(%) 88.6 851 694 715

Data set Ill comprised all records for 600 day weight

(W600), P8 fat depth for heifers/steers (P8-H) and b 600. Covariance matrices used are given in Tier and

(P8-B), and eye muscle area for heifers/steers (EMA- yer (2003). The index used assumed equal emphasis

O
and bulls (EMA-B) for this breed. Table 1 summaris 2 alltraits, iek’=(111117.
characteristics of the data structure. Measures of reliability. Approximate PECs of esti-

ated genetic RR were calculated for all animals as de-

Analyses.RR analyses fitted a cubic regression on Legwc_ribed above, amalgamating maternal covariances with

endre polynomials of age at recording for direct g&- manent environmental components. From these, ap-
netic, maternal genetic, direct permanentenvironmerﬁgf b ' > ap

and maternal permanent environmental effects vAfoximate reliabilities of RR coefficients and EBVs for

ances among RR coefficients and heterogeneous r?{\éea{ghts at birth, 200, 400 and 600 days were dete;r-
ed. Results were contrasted to approximate relia-

surement error variances were assumed to be those gsti. . :
lties computed using the procedure of Jamragtikal.

mated for Hereford cattle (Meyer, 2002). Fixed effec d ‘true’ reliabiliti btained f hei

fitted were contemporary groups (CG) and a quartic g000): @nd ‘true’ reliabilities obtained from the inverse
gression on LP of age, with CG defined as herd-s&k- 1€ Coefficient matrix in the MME using a Gibbs
management group-year/month of weighing subclas3g |ngg?§ tilgoé;;hrgnﬁ gﬁ)scckr'sb% '?g ﬂﬁé\g”e d%\?v?r?) to
for birth weights, and herd-sex-management group-dg 1,y s sgm les and discaroﬂn the first 209000
of weighing subclasses otherwise, dividing CGs furth am’ples as burn in IOIn addition empi?ical reliabilities
by applying an "age slicing” of 45 days up to 300 dayP the data sets considered were available from a sim-

and 60 days for higher ages. The multi-trait anal . i
(Data set II%) fitted gsimplge animal model with CGsya ation study (Meyer, 2003), which calculated accuracy

fixed effects. All 5 traits were assumed to have mog the square of the correlation bgtween true and est-
erate heritabilities (0.2-0.3), with the same traits merg_ated breeding value across all animals.

sured on different sexes assumed genetically highly defiteria . Method were compared by contrasting means
related (0.8), P8 measures assumed to have virtuallyaggoss all animals and by linear regression of theoretical
genetic association with the other traits, and EMA a@lues obtained fron€~* on their counterparts from
sumed have have a low genetic correlation (0.4) wRRproximations.
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Table 3. Reliabilities (in %) of EBVs. ear coefficients dominating the linear function, differ-
0d 200d 400d e6e00d ences between individual ages were small. Again there
was good agreement between approximate reliabilities

g%ﬂa lsft In 408 308 361 376 and their ‘true’ values. Approximations using Jam-
’Tlrug’a 10 a1 5 34 8 26 7 38 1 rozik’s method were g(_anerally higher than thosc_a _from
Approximation 4?') 6 34 > 36 0 37' 5 our method, resulting in lower regression coefficients
Br A 0 936 1 01'7 1 00'4 0 99'7 of ‘true’ on approximate. R values for the two ap-
RZ.(%) '96 0 é4 6 95 9 §5 3 proximations were comparable, however, with the for-
Jamrozik 45' 3 37' - 3é 5 39' - mer performing slightly better for data set | and copying
Br ) 0 906 0 91'2 0 95'2 0 962 somewhat less well with the bad structure of data set II.
Rz'(%) 968 959 97.0 96.9 Results for the multi-trait analysis are given in Table
Data set || 4. With most animals having W600 records, but only
Simulation 287 247 26.0 264 about 25% of animals having both scan traits recorded
True’ 303 262 275 278 as well, reliability of the index was largely determined
Approximation 31.6 265 27.3 275 by that of W600. Other indexes examinded (not shown)
Bra 0911 0955 0954 0.954 yielded similar results.
R?(%) 90.2 885 895 89.0 CONCLUSIONS
Jamrozik 349 31.0 311 315 Reliabilities of linear functions of estimated breeding
Br.a 0.894 0.885 0.925 0.923 values and hence prediction error covariances can be
R2(%) 888 869 884 878 satisfactorily approximated for data structures typical

. ) for beef cattle. The approximation procedure described
Table 4. Reliabilities (in %) of EBVS and index. is computationally undemanding and applicable to large
w600 P8-H P8-B EMA-H EMA-B Index scale problems.
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