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INTRODUCTION
Today’s genetic evaluation schemes involve models
comprising multiple, correlated additive genetic effects
for each animal. These can be multi-trait (MT) mod-
els or random regression (RR) models which model
trajectories in traits recorded repeatedly per animal
through a set of RR coefficients. Often we are in-
terested in linear functions of the resulting breeding
value (EBV) estimates. These may be selection indexes
combining EBVs for individual traits. For instance,
BREEDPLAN , the Australian genetic evaluation scheme
for beef cattle currently considers 22 traits (Johnston
et al., 1999). The companion program, BREEDOBJECT

(Barwick and Henzell, 1998) provides a range of cus-
tomised selection indexes from the EBVs generated by
BREEDPLAN . For RR models, estimates of the genetic
RR coefficients describe the complete trajectory of ge-
netic merit for each animal. EBVs for any point on the
longitudinal scale can be obtained by evaluating the re-
gression equations. Hence, like selection indexes, such
derived point EBVs are linear functions of multiple, es-
timated EBVs which are correlated.

When comparing EBVs, we are interested not only in
their values but also in how reliable they are. The relia-
bility or accuracy of an EBV depends on its prediction
error variance (PEV) relative to the genetic variance.
As such, it can be perceived as a statistic summaris-
ing the value of the information available in calculat-
ing the EBV. If the inverse of the coefficient matrix in
the mixed model equations (MME) is known, PEVs can
be found directly from the diagonal elements of the in-
verse. However, direct inversion is generally only fea-
sible for small populations, even if sparse matrix tech-
niques are used. Hence, a variety of methods have been
developed for approximating PEVs and the resulting ac-
curacies, which are suitable for large scale genetic eval-
uation schemes involving millions of animals.

Little attention has been paid to approximating accura-
cies of linear functions of EBVs. This requires approx-
imation of prediction error covariances (PEC) among
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individual EBVs as well as PEVs. This paper describes
a simple method to approximate both PEVs and PECs
simultaneously, developed by Tier and Meyer (2003),
extending the widely used method of equivalent num-
ber of progeny (ENP) from a single number to a matrix
of values for each individual. Examples of approximate
reliabilities of linear functions of EBVs for multi-trait
and RR models are given and contrasted to theoretical
values and simulation results.

METHOD
Prediction error (co)variances between effects in a lin-
ear mixed model are given by the corresponding ele-
ments of the inverse of the coefficient matrix in the
MME, denoted byC. Approximation methods available
thus generally attempt to adjust diagonal elements ofC
for ‘links’ with other effects in the model, so that recip-
rocals of the adjusted diagonals closely resemble the di-
agonal elements ofC−1. Early methods to approximate
PEVs for single trait analyses first adjusted diagonals
of animals with records for limited subclass sizes, then
accumulated adjustments to parents’ diagonals for lim-
ited information on their progeny, and finally adjusted
diagonals of progeny for the adjusted diagonals of their
parents, taking care not to double count the animal con-
sidered (e.g. Meyer, 1989). Principles involved in the
more recent procedures and our method are no differ-
ent. We need to account for the value of information on
each animal provided by its own records, its parents and
other known ancestors, its progeny and further descen-
dants, and any collateral relatives. In contrast to previ-
ous methods, however, we are approximating thek× k
diagonal block ofC−1 for each animal, corresponding
to all additive genetic effects fitted.

Multi-trait model. Considerk traits with single records
per trait. Let

y = Xb +Za+e (1)

denote the multi-trait animal model, withy the vector of
observations,b the vector of fixed effects,a the vector
of additive genetic values,e the vector of residual, and
X andZ the incidence matrices relating observations to
effects. Assume that all vectors are ordered according
to traits within animal, and let

Var(a) = A⊗G0 Var(e) = ∑
i

+Ri

whereA is the numerator relationship matrix,G0 and
R0 are thek×k matrices of genetic and residual covari-
ances among traits, ‘⊗’ denotes the Kronecker product
and ’∑+ the direct matrix sum.Ri is the submatrix of
R0 for the i−th animal, obtained by deleting rows and
columns for missing traits. Assume further that animals
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are ordered from oldest to youngest, i.e. that elements
of a for parents always precede those of their progeny.

Random regression modelWith repeated records per
animal in a RR model, we need to expand (1) to include
the permanent environmental (PE) effects

y = Xb +Wp +Za+e∗ (2)

with y, b andX as above, andp anda the vectors of RR
coefficients for animals’ PE and additive genetic effects,
respectively, ande∗ the vector of residuals. Assume
there arek covariables used to model the animals’ ge-
netic effects.W andZ are incidence matrices contain-
ing covariables relating regression coefficients to the
functions of the continuous scale (time) along which
observations have been recorded. Residualse∗m repre-
sent temporary environmental effects, and are assumed
independently distributed with variancesσ2

m.

Var(p) = I ⊗P0 Var(e) = Diag{σ2
m}

Value of observations for an animal. Let Di , of size
k×k, denote the block representing the contribution of
records for animali to information on its own EBVs.
This is derived from the data part of the MME.

Multi-trait model. With PE due to the animal included
in the residual,Di is simply the submatrix ofC corre-
sponding to the animal’s genetic effects

Di = Z′iR
−1
i Z i (3)

with Z i the submatrix ofZ for thei−th animal. Genetic
evaluation models generally include some ’contempo-
rary group’ effects among the fixed effects fitted, e.g.
herd-test day effects for dairy cattle data. (3) does not
account for limited subclass sizes. When individuali
has few contemporaries, (3) should be modified to be

Di = Z′i
(

R−1
i −R−1

i (S−1
i )R−1

i

)

Z i (4)

whereSi is the block ofC pertaining to the contempo-
rary groups of which animali is a member. This dis-
counts the value of observations to accommodate the
limited number of contrasts between this animal and
others, and is the multi-trait equivalent to replacing “1”
by (n−1)/n in a univariate, single record scenario (with
n the subclass size).

Random regression model. To obtain the equivalent in
the RR model, we need to ’absorb’ animals’ PE effects
into the corresponding genetic effects

Di = Z′iR
−1
i Z i−Z′iR

−1
i W i

(

W′iR
−1
i W i +P−1

0

)−1

W′iR
−1
i Z i (5)

with W i the submatrix ofW for animal i. As above,
contributions from observations can be discounted us-
ing weightswm = (nm−q)/nm≤ 1 for them−th record,
with nm the size of subclass to with the record belongs
andq the number of ‘repeated’ records it has in that sub-
class, i.e. replacingRi in (5) with R∗i = Diag{wmσ2

m}.
Value of observations on descendants.In the second
step, we accumulate the values of progeny and other de-
scendants for each animal, processing the pedigree ‘up-
wards’, i.e. from youngest to oldest. Conceptually, this
is obtained by assuming each progeny has only one par-
ent known and that this parent has no further informa-
tion, building the MME for the animal and the parent,
and then ‘absorbing’ the animal equations into those of
the parent. LetEi denote thek× k block of contribu-
tions for animali and pi the number of progeny it has.

Ei =
1
3

G−1
0 −

4
9

G−1
0 (Di +

pi

∑
l=1

El +
4
3

G−1
0 )−1G−1

0 (6)

This block is accumulated for both sire and dam of an-
imal i. As the pedigree is processed ‘upwards’ any
blocks El required for progeny of animali have al-
ready been fully determined. (6) is adequate if animali
has been directly contrasted to relatively few half-sibs.
If the animal’s records were in contemporary groups
which included many of its half-sibs, however,Di in
(6) would give an overestimate of the individual’s con-
tribution to its parents. As above, we can discount the
information required by weighing contributions with a
factor determined by the proportion of sibs in a sub-
class; see Tier and Meyer (2003) for details.

Value of observations on ancestors.Finally, we ac-
cumulate the values of parents, ancestors and collat-
eral relatives for each animal by processing the pedi-
gree from oldest to youngest. However, in the previous
step, the value of descendants for all animals was accu-
mulated. Hence the blockE j for parent j of animal i
includes the contribution fori. This has to be removed
first to avoid double counting. The adjusted block is

E∗j =
1
3

G−1
0 −

4
9

G−1
0

(

−Ei +F j +
4
3

G−1
0

)−1

G−1
0

whereF j is thek× k block for parentj in which con-
tributions from all sources of information has been ac-
cumulated. As the pedigree is processed ‘downwards’,
blocksF j have always been finalised when the contribu-
tion of parentj for animali to be calculated. The ‘final’
block Fi for an animal is then the sum of blocks for its
parents, ‘unadjusted’ for the animal, the block for the
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contribution from its own records, and the blocks for its
progeny

Fi =
ti

∑
j=1

E∗j +Di +
pi

∑
l=1

El (7)

whereti = 0,1, or 2 denotes the number of known par-
ents for animali.

Prediction error covariances. MatricesT i of approx-
imate PEV and PEC for thek genetic values estimated
for animali are then obtained as

T i = (Fi +G0)−1 (8)

The approximate reliability of a linear function of esti-
mated breeding values for animali is then

ρ2
i = 1−k′T ik/k′Gok (9)

wherek is the vector of index weights or covariables
evaluated for a given point along the longitudinal scale.

APPLICATION
Data. Data for RR analyses consisted of weight records
for beef cattle from birth to 730 days of age. Data set
I comprised records from an experimental herd, weigh-
ing animals at monthly intervals. Data set II were all
records available for Australian Murray Grey cattle.
Data set III comprised all records for 600 day weight
(W600), P8 fat depth for heifers/steers (P8-H) and bulls
(P8-B), and eye muscle area for heifers/steers (EMA-H)
and bulls (EMA-B) for this breed. Table 1 summarises
characteristics of the data structure.

Analyses.RR analyses fitted a cubic regression on Leg-
endre polynomials of age at recording for direct ge-
netic, maternal genetic, direct permanent environmental
and maternal permanent environmental effects. Vari-
ances among RR coefficients and heterogeneous mea-
surement error variances were assumed to be those esti-
mated for Hereford cattle (Meyer, 2002). Fixed effects
fitted were contemporary groups (CG) and a quartic re-
gression on LP of age, with CG defined as herd-sex-
management group-year/month of weighing subclasses
for birth weights, and herd-sex-management group-date
of weighing subclasses otherwise, dividing CGs further
by applying an “age slicing” of 45 days up to 300 days,
and 60 days for higher ages. The multi-trait analysis
(Data set III) fitted a simple animal model with CGs as
fixed effects. All 5 traits were assumed to have mod-
erate heritabilities (0.2-0.3), with the same traits mea-
sured on different sexes assumed genetically highly cor-
related (0.8), P8 measures assumed to have virtually no
genetic association with the other traits, and EMA as-
sumed have have a low genetic correlation (0.4) with

Table 1. Data structure.
Set I Set II Set III

No. records 75,829 227,219 47,655
Animals in data 7,305 117,977 28,768
. . . 1 obs. 800 58,396 17,838
. . . 2 obs. 545 26,840 2,973
. . . 3 obs. 158 19,795 7,957
. . . 4 obs. 271 10,776 0
. . . ≥ 5 obs. 5,531 2,170 0
Ancestors 1,138 55,149 21,659
Groups (CG) 11,417 54,263 7,407

Table 2. Reliabilities (in %) of RR coefficients.

interc. linear quadr. cubic

Data set I
Simulation 38.2 34.4 23.8 21.7
’True’ 38.6 34.6 23.8 21.8
Approximation 37.8 33.9 24.4 22.8
βT.A 0.999 0.982 0.954 0.949
R2(%) 95.3 95.0 94.6 94.6
Data set II
Simulation 26.5 21.5 9.3 8.7
’True’ 28.0 23.0 11.0 10.5
Approximation 27.8 22.2 9.7 9.5
βT.A 0.956 0.950 0.939 0.906
R2(%) 88.6 85.1 69.4 71.5

W600. Covariance matrices used are given in Tier and
Meyer (2003). The index used assumed equal emphasis
for all traits, i.e.k′ = (1 1 1 1 1).
Measures of reliability. Approximate PECs of esti-
mated genetic RR were calculated for all animals as de-
scribed above, amalgamating maternal covariances with
permanent environmental components. From these, ap-
proximate reliabilities of RR coefficients and EBVs for
weights at birth, 200, 400 and 600 days were deter-
mined. Results were contrasted to approximate relia-
bilities computed using the procedure of Jamroziket al.
(2000), and ‘true’ reliabilities obtained from the inverse
of the coefficient matrix in the MME using a Gibbs
sampling algorithm as described by Harville (1999) to
estimate the diagonal blocks forC required, drawing
400,000 Gibbs samples and discarding the first 20,000
samples as burn in. In addition, empirical reliabilities
for the data sets considered were available from a sim-
ulation study (Meyer, 2003), which calculated accuracy
as the square of the correlation between true and esti-
mated breeding value across all animals.

Criteria . Method were compared by contrasting means
across all animals and by linear regression of theoretical
values obtained fromC−1 on their counterparts from
approximations.
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Table 3. Reliabilities (in %) of EBVs.

0 d 200 d 400 d 600 d

Data set I
Simulation 40.8 30.8 36.1 37.6
’True’ 41.5 34.8 26.7 38.1
Approximation 43.6 34.2 36.0 37.2

βT.A 0.936 1.017 1.004 0.997
R2(%) 96.0 94.6 95.9 95.8

Jamrozik 45.3 37.7 38.6 39.7
βT.J 0.900 0.912 0.952 0.962
R2(%) 96.8 95.9 97.0 96.9

Data set II
Simulation 28.7 24.7 26.0 26.4
’True’ 30.3 26.2 27.5 27.8
Approximation 31.6 26.5 27.3 27.5

βT.A 0.911 0.955 0.954 0.954
R2(%) 90.2 88.5 89.5 89.0

Jamrozik 34.9 31.0 31.1 31.5
βT.J 0.894 0.885 0.925 0.923
R2(%) 88.8 86.9 88.4 87.8

Table 4. Reliabilities (in %) of EBVs and index.

W600 P8-H P8-B EMA-H EMA-B Index

’True’ 31.5 18.7 17.1 19.1 17.9 30.2
Approx. 28.2 16.4 16.2 15.5 14.9 27.2
βT.A 0.957 0.951 0.951 0.960 0.978 0.970
R2(%) 91.4 84.6 84.0 90.3 88.7 90.2

Results. Reliabilities for estimates of RR coefficients
for data set I and II are summarised in Table 2, together
with the regression of ‘true’ on approximate values
(βT.A) and the corresponding coefficient of determina-
tion (R2). On the whole, there was good agreements be-
tween approximate and theoretical values. Whilst mean
approximate values were slightly lower than ’true’ val-
ues, regression coefficients were less than unity, as the
approximation procedure tended to overestimate relia-
bilities for high accuracy animals. Simulation results
tended to be lower than their expectations, especially
for data set II, but with empirical standard deviations
between 2.0 and 2.7% differences were not significant.
R2 values were around 95% for all RR coefficients for
data set I with an average of 10.4 records per animal,
but were dramatically lower for data set II, in particular
the quadratic and cubic coefficients. With an average of
1.9 records per animal and few animals with 4 or more
records for this data set, this was not surprising. Dou-
bling the amount of data by adding a fictitious record
about 100 days after each actual one increased R2 for
the quadratic and cubic coefficients to just over 80%.

Corresponding statistics for EBVs at individual ages
are given in Table 3. With the intercept and lin-

ear coefficients dominating the linear function, differ-
ences between individual ages were small. Again there
was good agreement between approximate reliabilities
and their ‘true’ values. Approximations using Jam-
rozik’s method were generally higher than those from
our method, resulting in lower regression coefficients
of ‘true’ on approximate. R2 values for the two ap-
proximations were comparable, however, with the for-
mer performing slightly better for data set I and copying
somewhat less well with the bad structure of data set II.

Results for the multi-trait analysis are given in Table
4. With most animals having W600 records, but only
about 25% of animals having both scan traits recorded
as well, reliability of the index was largely determined
by that of W600. Other indexes examinded (not shown)
yielded similar results.

CONCLUSIONS
Reliabilities of linear functions of estimated breeding
values and hence prediction error covariances can be
satisfactorily approximated for data structures typical
for beef cattle. The approximation procedure described
is computationally undemanding and applicable to large
scale problems.
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