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1. Introduction

Animal breeding is concerned with the genetic improvement of farmed livestock. A central
task is the estimation of genetic parameters or, equivalently, variance components, required to design
selection programmes and in identification of genetically superior animals. Statistical techniques
used rely heavily on linear, mixed models. Whilst some traits of interest are measured only once per
animal, others are recorded repeatedly and may change, gradually and continually, as time progresses.
Typical examples are test day records for dairy cows, with milk production at the beginning and end
of lactation having quite different means and variances but high genetic correlations, and growth of
meat-producing animals. Recently, so-called random regression (RR) models have become popular
for the analysis of such data, as they allow complete ‘growth curves’ to be fitted within the linear,
mixed model framework, correctly modelling changes in mean and dispersion with time, and are
suitable for large scale applications. This paper reviews the use of RR models in analyses of data
from livestock improvement schemes, concentrating on variance component estimation.

2. Random Regression Models

Typically, RR models for genetic analyses include at least two sets of RR coefficients for each
animali, representing the direct, additive genetic (αim) and permanent environmental (γim) effects of
the animal. Letyi j denote thej−th record for animali taken at age (or time)ai j . Covariables are
functions of age,φm(ai j ). Orthogonal polynomials are the most common choice, as they require few
assumptions about the shape of the trajectory to be modelled, but other functions, such as spline or
trigonometric functions have been used. This gives the linear model

(1) yi j = Fi j +
kA−1

∑
m=0

αimφm(ai j )+
kR−1

∑
m=0

γimφm(ai j )+ εi j

whereFi j denotes the fixed effects andεi j the temporary environmental effect or ‘measurement error’
affectingyi j . The number of regression coefficients fitted is given bykA andkR. In matrix notation,

(2) y = Xb +ΦΦΦAααα +ΦΦΦγγγ +εεε

with y, ααα, γγγ andεεε the vectors of observations, RR coefficients and residuals, respectively, assumed to
be ordered according to animals, andb denoting the vector of fixed effects fitted.X, ΦΦΦA andΦΦΦ are
the corresponding design matrices. Assume thatααα, γγγ andεεε are uncorrelated and that

E [ααα] = 0 E [γγγ] = 0 E [εεε] = 0

Var(ααα) = A⊗KA = G Var(γγγ) = IN⊗KR = R Var(εεε) = Diag
{

σ2
k

}

= ΣΣΣε

with N denoting the number of animals with records, andIN an identity matrix of sizeN. This gives

(3) Var(y) = ΦΦΦA(A⊗KA)ΦΦΦA
′+ΦΦΦ (IN⊗KR)ΦΦΦ′+Diag

{

σ2
k

}

= ΦΦΦAGΦΦΦA
′+ΦΦΦRΦΦΦ′+ΣΣΣε = V

Partitioning of animal effects into their genetic and non-genetic components requires information on
relationships between animals, which is provided by the numerator relationship matrixA. Animals



in the pedigree only are included inααα, which has lengthNA×kA for NA > N, with the corresponding
rows ofΦΦΦA having elements zero.KA = {KAi j} andKR = {KRi j} are the matrices of covariances
between RR coefficients, andσ2

k denote the measurement error variances. If assumed heterogeneous,
changes inσ2

k with age at recording are commonly modelled through a step function or a low order
polynomial variance function ofσ2

k or log(σ2
k ).

3. Estimation of Breeding Values

For known variances, solutions to the mixed model equations (4) yield best linear unbiased
predictions (BLUP) ofααα andγγγ. Coefficientsαim for animali define it’s genetic merit for all ages

(4)
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within the range considered, and estimated breeding values for target agesak are obtained simply
by evaluating the regression curve,∑kA−1

m=0 αimφm(ak). In addition, functions of the curve may be of
interest, e.g. integrals of estimated lactation curves to estimate total lactation genetic merit for dairy
cows, or turning points of growth curves to distinguish between early and late maturing animals.

4. Estimation of Covariance Functions

Covariance functions (CF) defining genetic (A ) and permanent environmental (R) covariances
between agesai anda j are given byKA andKR.

A (ai,a j) =
kA−1

∑
m=0

kA−1

∑
n=0

φm(ai)φn(a j)KAmn and R(ai,a j) =
kR−1

∑
m=0

kR−1

∑
n=0

φm(ai)φn(a j)KRmn(5)

With A andR generally fitted to reduced order, i.e.kA andkR smaller, often much smaller, than
the number of ages in the data, the resulting estimates of covariance matrices among observations are
smoothed and have reduced rank. Estimates of CFs can be obtained by restricted maximum likelihood
(REML), using a derivative-free or an ‘average information’ (Gilmour et al., 1995) algorithm, or
Bayesian analysis. ForC the coefficient matrix in (4) andy′Py is the weighted sum of squares of
residuals (Py = ΣΣΣ−1

ε (y−Xb̂−ΦΦΦAα̂αα−ΦΦΦγ̂γγ)), the REML log likelihood for (2) is

(6) −2logL = const+ log|G|+ log|R|+ log|ΣΣΣε |+ log|C|+y′Py

Bothy′Py and log|C| can be evaluated by factoring (Graser et al., 1987)

(7) M =
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while the other terms in (6) can be determined indirectly. First derivatives are obtained similarly,
using an ‘automatic differentiation’ of the Cholesky factor ofM (Smith, 1995), which only requires
derivatives ofM to be evaluated. ForM = LL ′, of sizeM×M, l ii the i−th diagonal element ofL , θk

thek−th variance component to be estimated and∂L/∂θk =
{

∂ l i j/∂θk
}

,

log|C|= 2
M−1

∑
i=1

log(l ii ) ∂ log|C|/∂θk = 2
M−1

∑
i=1

l−1
ii ∂ l ii/∂θk(8)

y′Py = l2MM ∂y′Py/∂θk = lMM ∂ lMM/∂θk(9)

log|ΣΣΣε |= ∑
k

log(σ2
k ) log|G|= NAlog|KA|+kAlog|A| log|R|= N log|KR|(10)



The average of observed and expected information (AI) is proportional to second derivatives of
y′Py, the ‘data part’ of logL , and thus considerably easier to compute than either of the former,
∂ 2y′Py/∂θk∂θm = b′kPbm with bk = ∂V/∂θk Py. Let B be the matrix of column vectorsbk, and
expandM to MB by replacingy andy′ in M by B andB′, respectively. Absorbing rows 1 toM−1 of
MB then replaces elements ofB′ΣΣΣ−1

ε B with b′kPbm. With M already factored in evaluating logL , ad-
ditional computations needed are undemanding. The AI can be used in a modified Newton-Raphson
procedure to maximise logL , parameterising to elements of the Cholesky decompositions ofKA and
KR, taking logarithms of their diagonal elements andσk to remove constraints on the parameters.

Bayesian estimates can be obtained using Gibbs Sampling. Location parametersb, ααα andγγγ can
be sampled sequentially, considering blocks of RR coefficients, from their fully conditional distribu-
tions. Variances are sampled from inverted Wishart (IW) orχ2 distributions. For priorsΣΣΣ−1

α andΣΣΣ−1
γ ,

matrices of sums of squaresSα =
{

ααα ′kA
−1αααm

}

andSγ =
{

γγγ ′kγγγm

}

and degrees of freedomνα andνγ

KA∼ IW
(

(Sα +ΣΣΣα)−1,NA + να
)

and KR∼ IW
(

(Sγ +ΣΣΣγ)−1,N + νγ
)

(11)

whereαααm andγγγm are the subvectors ofααα andγγγ gathering them−th RR coefficients for all animals.
Further details are given, for instance, by Jamrozik and Schaeffer (1997).

5. Eigenfunctions and beyond

Eigenvalues and eigenfunctions of genetic CFs provide valuable insights on how the trajec-
tory modelled is likely to change due to selection (Kirkpatrick and Heckman, 1989). These can be
estimated through an eigenvalue decomposition of the corresponding covariance matrix of RR coef-
ficients,KA = QDiag{λi}Q′. The eigenvector pertaining to the largest eigenvalueλ1 gives the linear
function of random regression coefficients which explains most genetic variation, and the correspond-
ing eigenfunction shows the expected change at each age when selecting on this combination. For
traits changing gradually with age, correlations between measurements at different ages are generally
high, and a few eigenfunctions suffice to account for almost all genetic variance.

Reparameterisation of (4) to estimateααα∗ = Q′ααα directly yields estimates of genetic values for
the eigenfunctions. Omitting estimation of coefficientsα∗ corresponding to eigenvalues close to zero
then results in little loss of information, but can yield substantial computational savings. Analogous
arguments apply forγγγ. Similarly, the number of variance components to be estimated can be reduced
by imposing rank restrictions on estimates ofKA or KR.
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Figure 1. Genetic correlations and
variance components

6. Example

REML estimates of variance components were obtained
for 21,053 weights ofN = 3,417 beef calves, recorded at
monthly intervals from birth to 280 days of age, fitting RRs
on Legendre polynomials of age withkA = 5 andkR = 6. These
were records taken prior to weaning, i.e. maternal genetic (M)
and permanent environmental (C) effects had to be taken into
account in addition to animals’ direct effects. Hence two addi-
tional sets of RR withkM = kC = 3 were included in the model
of analysis. Changes inσ2

k were modelled as a quadratic func-
tion of age at weighing, yielding a total of 52 parameters to be
estimated. Calves were offspring of 1,023 dams and 174 sires,
and including parents without records yieldedNA = 3,794. Fig-
ure 1 shows estimates of the direct variance components for the
ages in the data derived from estimated CFs and measurement error variances (bottom), as well as
estimates of genetic correlations with contour lines from 0.95, . . . ,0.65 in steps of 0.05.



7. Discussion

Impetus for the uptake of RR models in animal breeding has come from the work of Kirkpatrick
and co-workers (e.g. Kirkpatrick and Heckman, 1989) who introduced the concept of covariance
functions to quantitative genetics. Analyses of longitudinal or similar data in other areas of applied
statistics frequently assume a parametric correlation structure, with ‘random coefficient’ models of-
ten found to be of little advantage, requiring high orders of fit, and yielding less readily interpretable
covariance functions than a parametric correlation function. In contrast, animal breeders have em-
braced RR models for the analysis of longitudinal data, in particular test-day records of dairy cows
and growth data for pigs and beef cattle.

Quantitative genetic analyses are invariably concerned with the variation between animals,
while other areas of statistics are often content with modelling within-subject covariances only. Fit-
ting a set of additive genetic RR coefficients provides estimates of genetic merit for the whole range
of ages considered, and allows ranking of animals to change with time. RR models are thus an ob-
vious choice if we are concerned with (genetic) differences between individuals. Assuming a RR
model and resulting covariance structure on a genetic level, it seems natural to apply the same model
to other random effects such as permanent environmental effects. RR models account for changes in
variances with time and do not require specific assumptions about the shape of the resulting CF, other
than implied by the choice of covariables.

Estimates of genetic covariance matrices arising from RR model analyses can be thought of
as smoothed versions of corresponding estimates from an unstructured, multivariate analysis treating
records at different ages as different traits. Estimates of the eigenvalues and eigenfunctions of CFs
can be obtained directly from estimates of covariances among RR coefficients. For genetic covariance
functions, these statistics provide valuable insight into the effects of selection for the trait considered.

Last, but not least, RR models provide a computationally feasible way to estimate CF for large
data sets with records coming in at ‘all ages’, as are typical for data from livestock recording schemes.
Estimating coefficients of CFs as the matrix of covariances between RR coefficients requires manip-
ulation of mixed model equations of size proportional to the number of regression coefficients to be
manipulated, rather than proportional to the number of ages or even the number of records. Neverthe-
less, computational requirements of RR can be large, in particular for variance component estimation.
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RÉSUMÉ

On descrive des modèles de régression aléatoire pour analyse des données longitudinales en
génétique animale.


