
Obtaining estimates of marker effects and their standard
errors from estimates of genomic breeding values
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1 Introduction

Mixed model analyses fitting the so-called animal model have been shown to account for
‘structure’ in the data from relationships between individuals in genome wide association
analyses (GWAS). In particular, EMMAX – standing for Efficient Mixed Model Analysis
eXpedited (Kang et al., 2010) – is widely used. This involves a mixed model fitting a
single marker at a time as a fixed covariable in addition to a random effect representing
individuals’ additive genetic effects (a.k.a. breeding values) with given relationship matrix.
Estimates of variance components are usually obtained from a preliminary REML analysis
omitting such covariables and potential concerns about double counting due to including
the same marker in constructing a genomic relationship matrix are considered negligible
(Chen et al., 2017).

Early applications executed a separate best linear unbiased prediction (BLUP) analysis
for each marker which proved laborious and time consuming. Several authors developed
computationally more efficient implementations. In particular, Meyer and Tier (2012)
proposed a strategy dubbed “SNP Snappy”, exploiting that only the values for the marker
covariable differ between individual BLUP runs. This reduces the computational burden
of EMMAX dramatically by carrying out the Cholesky composition of the coefficient
matrix for all equations other than the marker covariable once and then processing the
final equation only, considering all markers sequentially in the same analysis. This has
been implemented inWOMBAT since 2012 and is available via the run option --snap.

More recently, it has been shown that EMMAX test statistics can be obtained by carrying
out a standard BLUP analysis fitting an animal model with a genomic relationship matrix
(GBLUP) (excluding marker effect covariables). Predicted marker effects are then obtained
as ‘back solutions’, through a linear transformation of the predicted breeding values. This
allows their standard errors to be determined as a function of the corresponding parts of the
inverse of the coefficient matrix in the mixed model equations (MME) (Gualdrón Duarte
et al., 2014; Bernal Rubio et al., 2016; Chen et al., 2017; Legarra et al., 2018). Surprisingly,
while the values of predicted, random marker effects and fixed covariables and the
corresponding standard errors differ, the resulting test statistics for the two approaches,
i.e. the ratios of estimates divided by their standard errors, have the same values; see the
appendix of Bernal Rubio et al. (2016) for an algebraic proof.

Derivations in the literature mainly considered univariate scenarios, as the extension to
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multivariate cases simply involves the same calculations considering one trait at a time
(Lu et al., 2018), provided the covariance matrices between traits for markers and breeding
values are the same or proportional. While analyses fitting markers as fixed covariables
require genotype information for all individuals with records, EMMAX via transformation
of predicted breeding values is equally applicable to so-called ‘single step’ genomic BLUP
(ssGBLUP) and thus readily accommodates the use of data from ungenotyped individuals
in addition (Aguilar et al., 2019). On the other hand, it requires the inverse of the coefficient
matrix of the MME, while its Cholesky factorisation suffices for calculations via “SNP
Snappy”.

An option to carry out ‘EMMAX via linear transformation’ (subsequently referred to as
ssGWAS) at the end of a BLUP or REML run recently has been added toWOMBAT, and
this note describes its use.

2 Background

Let M denote the matrix of marker counts or “gene content” (of size number of genotyped
animals × number of markers) and P the corresponding matrix of assumed frequencies,
pi. The genomic relationship matrix (GRM) is then calculated from the centered marker
counts. Popular forms are

GM = (M − 2P) (M − 2P)′ /s = ZZ′/s (1)

or

GM = (M − 2P) W−1 (M − 2P)′ /m = ZW−1Z′/m (2)

as described by Van Raden (2008) or Yang et al. (2010), respectively, where W is a diagonal
matrix with elements 2pi(1 − pi), m denotes the number of markers and s = 2

∑
i pi(1 − pi).

GM is then often modified to ensure that it can ‘safely’ be inverted, to improve alignment
between GRM and pedigree based relationships or to account for residual polygenic
variation. Common types of modifications, especially for ssGBLUP, can be summarised as

G = λ
[
β(GM + εI) + αJ

]
+ (1 − λ) A22 (3)

with 0 ≤ λ ≤ 1 denoting the proportion of total genetic variance due to marker effects,
A22 the part of the pedigree based relationship matrix for genotyped individuals, α and β
the ‘alignment’ factors proposed by Christensen (2012) or Vitezica et al. (2011), J a matrix
with all elements equal to unity, I an identity matrix and ε a small constant.

2.1 Predicted marker effects and their variance

Utilising the equivalence between a model which accounts for additive genetic effects by
fitting marker effects directly and GBLUP (Strandén and Garrick, 2009), we can write the
vector of breeding values, u, as a function of the marker effects, a,

û = Z â (4)

Predictions for a can thus be obtained from the predicted breeding values, regressing a on
u. Similarly, standard errors of the elements of â can be determined from the matrix of
prediction error variances of û.
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Gualdrón Duarte et al. (2014) consider G = GM of form (Eq. 2), incorporating weighting
and scaling into G by defining a matrix Z̃ with elements z̃i j = (mi j − 2pi)/

√
2mpi(1 − pi), so

that G = Z̃Z̃′. This gives

â = Cov (a,u′) Var (u)−1 û (5)

= σ2
aσ
−2
u Z̃′G−1û = Z̃′G−1û

for Var (a) = σ2
aI, Var (u) = σ2

uG and assuming that, after scaling, σ2
a = σ2

u. It follows that

Var (â) = Z̃′G−1 Var (û) G−1Z̃ (6)

with

Var (û) = σ2
uG − Cuu (7)

and

Var (â) = σ2
uZ̃′G−1Z̃ − Z̃′G−1CuuG−1Z̃ (8)

where Cuu is the part of the inverse of the coefficient matrix in the MME corresponding to
û.

Recently, Aguilar et al. (2019) presented an extension to single-step analyses, considering
G of form in (Eq. 3), with GM = ZZ′/s (Eq. 1). Formulae given were

â = λβ
[
2
∑

ipi(1 − pi)
]−1 Z′G−1û2 = F Z′G−1û2 (9)

and

Var (â) = F2Z′G−1
[
σ2

u G − Cuu
22

]
G−1Z (10)

with û2 the subvector of û for genotyped individuals and Cuu
22 the corresponding part of

Cuu.

2.2 Significance testing

Test statistics for individual markers are obtained by dividing estimates âi by their standard
errors,

ti = âi/
√

Var (âi) (11)

with probability (p-value)

pvi = 2 (1 −Φ (|ti|)) (12)

where Φ(x) denotes the value of cumulative density function of the standard Normal
distribution at x.

Note that scaling factors used by Gualdrón Duarte et al. (2014) and Aguilar et al. (2019)
differ slightly – the former authors scale Z by the equivalent to

√
2
∑

pi(1 − pi) while
the latter use 2

∑
pi(1 − pi). However, as the same factor enters both the numerator and

denominator of the ratio ti, the test statistic is invariant to this difference.
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2.3 Equivalent EMMAX regression coefficient

Using results from Bernal Rubio et al. (2016), Aguilar et al. (2019) emphasize the possibility
to convert â to the estimates of fixed regression coefficients (bi) from a corresponding
EMMAX analysis. For GM of form (Eq. 1),

bi = F σ2
u âi/Var (âi) (13)

(Aguilar et al. (2019) omit the factor F). For a weighted GM (Eq. 2),

bi = F σ2
u âi/

(
Var (âi)

√
wi

)
(14)

with wi = 2pi(1 − pi).

3 Notes on implementation

Implementation of ssGWAS inWOMBAT follows the procedure outlined by Aguilar
et al. (2019).

It is assumed that marker solutions and corresponding statistics are required for one
random effect representing additive genetic effects only.

Solutions (and standard deviations) reported for marker effects are scaled so that ‘re-
constructing’ breeding values for genotyped individuals for λ = β = 1 as ũ2 = Zâ (or
ũ2 = ZW1/2â) yields a regression of û2 on ũ2 close to unity.

Major computational requirements are imposed by

1. The need to invert and store the inverse of the coefficient matrix in the MME.
2. For efficiency, the complete matrix of marker counts is currently held in core.

This requires an array of size n2 ×m, where n2 denotes the number of genotyped
individuals. For large numbers of genotypes or markers this may require excessive
RAM.

3. The current implementation also requires an additional array of size n2 × n2, used to
hold dense matrices G−1 and Cuu

22 .

The additional RAM required may be reduced by considering subsets of markers to be
processed simultaneously or ‘packed’ storage of G−1, and may be implemented in the
future.

4 Specifications

Execution of ssGWAS at the end of a BLUP or REML analysis can be invoked by adding a
single line within a SPECIAL block in the parameter file:

BSOLVE-SNP rname
where rname denotes the name of the random effect in the model of analysis representing
additive genetic effects which is to be used to obtain marker test statistics.

Additional information required is expected to be supplied in the same form as for the
pre-analysis module to calculate the GRM, its inverse or H−1, invoked via run option
--hinv; see the documentation for Example 20 for details. Again these consist of lines
added to the SPECIAL block in the parameter file:

a) The number of markers to be considered is specified as

HINVERSE SNP m
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where m represents the number of markers.
b) The weighting factor λ to combine genomic and pedigree based relationships in

building G for single step analyses. This has a default value of 1. Other values can be
specified by adding the line

HINVERSE LAMBDA λ
with 0 < λ ≤ 1.

c) The factor β used to scale G for single step analyses. Again, this has a default value of
1 and other values need to be specified by adding the line

HINVERSE BETA β

d) The method used to build the GRM. Current values recognised are VRADEN1 for
Van Raden (2008)’s Method 1 and YANG for Yang et al. (2010)’s method. The line to be
added is

HINV HOWGRM method
e) A keyword to specify what frequencies were used to center marker counts when

building the GRM can be given as

HINV CENTER keyword

Currently, keywords recognised are FREQ for ‘observed’ frequencies calculated from
the marker counts used to build G (default) and HALF for all frequencies assumed to be
equal to 0.5.

Lines with appropriate default values are optional. If WOMBAT has been used to
compute G−1 or H−1, an auxiliary file HinvMeta is written out which gives the settings for
the many options available. If this file is found in the working directory,WOMBAT will
acquire the values of the above options from it (NB: If found, values from this file will
take precedence over any specification in the parameter file).

5 Additional input

5.1 Marker allele counts

ssGWAS requires the file with marker allele counts used to construct the GRM, coded as
0, 1 or 2. It is assumed to be in the same form as required for use inWOMBAT with run
option --hinv.

File name. The file has the default name MarkerCounts.dat. The default extension .dat
implies a formatted file. If this is not found,WOMBATwill attempt to open and read
from MarkerCounts.BIN or MarkerCounts.BI1 as an unformatted file, which can be faster.

An alternative filename can be used but requires adding the line

MRK filename

to the parameter file (where filename can have the same extensions as above; see the
WOMBATmanual for details).

File layout. As for the single-step modules, each ‘row’ for an animal is expected to begin
with the individual code (matching the codes in the data and .codes files) followed by the
marker allele counts. This is a list-directed Fortran read, reading the individual code as
as a standard length integer and the allele counts as single precision real or integer*1
variable. For large numbers of markers, the ‘row’ can be spread over several lines in the
input file (but the next individual must always start with a new line).
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NB: For ssGWAS and --hinv, animal codes are NOT used – instead it is assumed that
allele counts are given in the SAME sequence as the genotyped individuals occur in the
list of codes, in increasing numerical order!

Marker counts must be complete. i.e. specified for all animals marked as genotyped in
the pedigree file and missing counts for individual markers are not accommodated. Note
also thatWOMBAT does NOT perform any checks or quality control on the contents of
this file.

5.2 Type of individual

To use genomic relationships, BLUP or REML analyses inWOMBAT require the inverse of
the GRM or H−1 to be supplied by the user. This needs to accompanied by a corresponding
.codes file which lists original codes identifying individuals and their running numbers.
For ssGWAS, this file is expected to have a third column with value “2” if the individual
has genotype information and “1” if it doesn’t.

If the .gin file with H−1 or G−1 has been set up usingWOMBAT, this additional column
is automatically added to the corresponding .codes file generated at the same time.

5.3 Inverse of the GRM

For analyses with all animals genotyped, the .gin matrix supplied is equal to the inverse
of the GRM and G−1 is acquired from it.

Otherwise (i.e. when G−1 , H−1), a separate file containing G−1 is required. This is
expected to be a formatted file with the default name of GRMInv.dat. It should contain one
line for each non-zero element comprised of three space-separated columns containing
the row number (integer), column number (integer) and coefficient (real8), respectively,
where row and column numbers are ‘running numbers’, i.e. 1 to number of genotyped
animals.

Alternatively, for λ = 1, GM can be supplied via a file with the default name of GRM.dat,
with the same format as GRMInv.dat. If this is given,WOMBATwill construct G of form
(Eq. 3) using the values of ε, α and β supplied or set by default. A Cholesky factorisation
of G is then performed and G−1Z is obtained by solving GX = Z for X (without inverting
G).

IfWOMBATwith run option --hinv is used to generate the .gin matrix and G−1 or G
are needed the line

HINV out GRMINV

or HINV out GRM, respectively, can be added to the parameter file for that preliminary run
to generate these additional output files.

6 Output

Results are written to a formatted file with standard name BackSoln_SNPeffects.dat.
This contains one line per marker and trait comprised of 8 columns:

Column 1 gives the running number of the marker,
Column 2 gives the trait number,
Column 3 gives the solution for the marker effect,
Column 4 gives the corresponding standard error,
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Column 5 gives the ratio of effect solution to its standard error,
Column 6 gives the p−value for the test statistic,
Column 7 gives log 10 of the p−value, and
Column 8 gives the solution converted to an EMMAX fixed regression coefficient.

BackSoln_SNPEffects.dat
SNPNo. Trait Solution S.Error Ratio p-value -log10(p) EMMAX

1 1 -0.208986E-01 0.167423 -0.12482552 0.90066168 0.04543831 -0.648366E-01
2 1 -0.623655E-02 0.175305 -0.03557536 0.97162096 0.01250313 -0.176476E-01
3 1 0.611629E-01 0.160678 0.38065612 0.70345844 0.15276156 0.206020
4 1 0.656210E-01 0.159621 0.41110448 0.68099592 0.16685549 0.223972
5 1 -0.996457E-02 0.177951 -0.05599628 0.95534477 0.01983987 -0.273647E-01
6 1 0.397005E-01 0.168285 0.23591172 0.81350117 0.08964182 0.121909
7 1 -0.347068 0.165186 -2.10107358 0.03563451 1.44812924 -1.10611
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