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Abstract1

‘Parameter expanded’ and standard expectation maximisation algorithms are de-2

scribed for reduced rank estimation of covariance matrices by restricted maximum3

likelihood, fitting the leading principal components only. Convergence behaviour of4

these algorithms is examined for several examples and contrasted to that of the aver-5

age information algorithm, and implications for practical analyses are discussed. It is6

shown that expectation maximisation type algorithms are readily adapted to reduced7

rank estimation and converge reliably. However, as is well known for the full rank8

case, the convergence is linear and thus slow. Hence, these algorithms are most useful9

in combination with the quadratically convergent average information algorithm, in10

particular in the initial stages of an iterative solution scheme.11

restricted maximum likelihood / reduced rank estimation / algorithms /12

expectation maximisation / average information13

1 Introduction14

Restricted maximum likelihood (REML) is one of the preferred methods for estimation15

of genetic parameters in animal breeding applications. Algorithms available to locate the16

maximum of the likelihood function differ in efficiency, computational requirements, ease17

of implementation and sensitivity to starting values in iterative schemes. The so-called18

‘average information’ algorithm has been found to be highly effective, often converging19

in few rounds of iteration [40]. However, there have been some, albeit largely anecdotal,20

observations of convergence problems for analyses with ‘bad’ starting values, many random21

effects or large numbers of traits. On the other hand, ‘expectation-maximisation’ (EM)22

type methods are noted for their stability, yielding estimates within the parameter space23

and an increase in likelihood with each iterate. Unfortunately, these desirable features often24

come at the price of rather slow convergence rates.25

Over the last decade or so, a number of new, ‘fast’ EM procedures have been proposed.26

Of particular interest is the PX-EM or ‘parameter expanded’ algorithm of Liu et al. [20].27

Foulley and van Dyk [6] considered its application for several types of mixed model analyses,28

demonstrating a dramatic increase in speed of convergence over the standard EM algorithm.29
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Yet, there has been virtually no practical use in variance component estimation so far.30

Covariance matrices in multivariate analyses by and large have been treated as ‘unstruc-31

tured’, i.e. apart from symmetry and requiring eigenvalues to be non-negative, no further32

assumption are made. There has been growing interest, however, in analyses considering33

the leading ‘factors’ or ‘principal components’ of a set of correlated effects only. As dis-34

cussed by Kirkpatrick and Meyer [16], omitting any factors explaining negligible variation35

reduces the number of parameters to be estimated, yielding a highly parsimonious model.36

The resulting estimates of covariance matrices then have a factor-analytic structure [e.g.37

15] or, assuming specific variances are zero, have reduced rank (RdR). Average information38

algorithms for these scenarios have been described by Thompson et al. [39] and Meyer and39

Kirkpatrick [29], respectively.40

On closer inspection, it is evident that the PX-EM algorithm [20] involves a reparame-41

terisations of the standard, linear mixed model of the same form as REML algorithms to42

estimate RdR covariance matrices [29]. This can be exploited to obtain EM type estima-43

tors for factorial and RdR models. After a brief review of pertinent algorithms, this paper44

extends the approach of Foulley and van Dyk [6] to EM and PX-EM estimation for mod-45

els fitting the leading principal components only. Convergence behaviour of the resulting46

algorithms is examined for a number of practical examples, and contrasted to that of the47

average information algorithm.48

2 Review49

Maximum likelihood estimation of variance components almost invariably represents a con-50

strained optimisation problem which needs to be solved iteratively [8].51

2.1 Average information algorithm52

A widely used optimisation procedure is the Newton-Raphson (NR) algorithm. It utilises53

both first and second derivatives of the function to be optimised, and thus provides an54

efficient search strategy [e.g. 35]. A particular variant of NR used in REML analyses55

is the ‘average information’ (AI) algorithm, proposed by Thompson and co-workers (see56
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[40]), which replaces second derivatives of logL by the average of observed and expected57

values. NR algorithms perform unconstrained optimisation while REML estimates are58

required to be within the bounds of the parameter space [8]. Fortunately, constraints are59

readily implemented by estimating functions of the variance components for which the60

parameter space is not limited. Pinheiro and Bates [36] compared several options. The61

most commonly used is a parameterisation to the elements of the Cholesky decompositions62

of the covariance matrices, taking logarithmic values of the diagonal elements [19, 31]. As63

well as enforcing permissible estimates, this can improve rates of convergence of iterative64

maximisation schemes [7, 24]. In addition, NR type algorithms do not guarantee logL65

to increase. While an initial, small step in the ‘wrong direction’ might result in a better66

position for subsequent steps, NR algorithms frequently do not recover from steps away67

from the maximum of logL (logLmax). The step size in a NR iterate is proportional to the68

product of the inverse of the information (or AI) matrix and the vector of first derivatives69

of logL. A simple modification to control ‘overshooting’ is to reduce the step size until an70

increase in logL is achieved.71

Optimisation theory divides the convergence of NR algorithms into two phases [1] : Phase72

I comprises iterates sufficiently far away from logLmax that step sizes need to be ‘damped’73

to increase logL. Convergence in this phase is generally at least linear. Jennrich and74

Sampson [14] suggested a simple strategy of successive ‘step halving’ for this purpose.75

More sophisticated, ‘backtracking’ line search algorithms are available which attempt to76

optimise step sizes and guarantee convergence; see, for instance, Boyd and Vandenberghe77

[1], chapter 9. In particular, Dennis and Schnabel [4] describe a quadratic approximation to78

choose a scale factor τ . Utilising derivatives of logL this yields an estimate of τ without the79

need for an additional function evaluation. If this step size fails to improve logL, updates80

can be obtained using a cubic approximation. Phase II, the ‘pure’ Newton phase, is reached81

when no further step size modifications are required. Typically, this phase shows quadratic82

convergence rates and involves relatively few iterates.83

In addition, successful optimisation via NR algorithms requires the Hessian matrix (or its84

approximation) to be positive definite. While this is guaranteed for the AI matrix, which85

is a matrix of sums of squares and crossproducts, it can have eigenvalues close to zero or a86

large condition number (i.e. ratio of largest to smallest eigenvalue). Such ill-conditioning87
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can result in a vector of overly large step sizes which, in turn, may need excessive scaling88

(τ � 1) to enforce an increase in logL, and thus hamper convergence. It is then advisable89

to modify the Hessian to ensure that it is ‘safely’ positive definite. Strategies based on the90

Cholesky decomposition of the Hessian matrix have been described [5, 37] that are suitable91

for large optimisation problems. For problems small enough to compute the eigenvalues92

of the Hessian matrix, we can directly modify the vector of eigenvalues and compute a93

corresponding modified Hessian matrix, or add a small multiple of the identity matrix. The94

latter results in an update of the parameters intermediate between that from a NR step95

and a method of steepest descent algorithm. Choices of modification and for minimum96

eigenvalues are discussed by Nocedahl and Wright [35], chapter 6.97

2.2 Expectation maximisation algorithm98

A widely used alternative to NR for maximum likelihood estimation is the EM algorithm,99

described by Dempster et al. [3]. It involves computing the expectation of the (log) like-100

lihood, pretending any ‘missing data’ are known, the so-called E-step. Secondly, in the101

M-step, this expectation is maximised with respect to the parameters to be estimated; see,102

for example, Ng et al. [34] for an exposé, or McLachlan and Krishnan [21] for an in-depth103

treatment. The popularity of the EM type algorithm is, in part at least, due to its property104

of monotone convergence under fairly general conditions, i.e. that the likelihood increases105

in each iterate. In addition, for variance component problems based on the linear, mixed106

model, estimates are guaranteed to be within the parameter space, and terms in the es-107

timators are usually much easier to calculate than those for NR type methods. An early108

formulation for an EM type algorithm to estimate covariances for multiple trait models has109

been presented by Henderson [11].110

The main disadvantage of EM type algorithms is that they can be rather slow to converge.111

While NR methods are expected to exhibit quadratic rates of convergence, EM algorithms112

are expected to converge linearly [34]. This behaviour has motivated numerous modifi-113

cations of the basic EM algorithm, aimed at improving its rate of convergence. In the114

simplest cases, it is attempted to predict changes in parameters based on changes over the115

past iterates, e.g. the ‘accelerated EM’ [17], which employs a multivariate form of Aitken116
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acceleration. Other modifications involve approximations to derivatives of the likelihood117

to yield Quasi-Newton [e.g. 13, 22] or gradient type procedures [e.g. 12, 18]. In addition,118

several generalised EM type algorithms have been proposed over the last decade. Strategies119

employed in these include maximisation of the likelihood conditional on subsets of the pa-120

rameters, switching between the complete and observed likelihoods, or alternating between121

schemes to augment the observed by the missing data; see Meng and van Dyk [23] for a122

review.123

Less attention has been paid to the effects of choice of parameterisation on convergence124

behaviour of EM type algorithms. Thompson and Meyer [38] showed that estimation of125

linear functions of variance components, similar in form to mean squares between random126

effects in balanced analyses of variance, instead of the variance components could dra-127

matically improve convergence of the EM algorithm. While a reparameterisation to the128

non-zero elements of Cholesky factors of covariance matrices is routinely used with NR and129

Quasi-Newton type algorithms [e.g. 31, 33], this has found virtually no use in practical EM130

estimation of variance components. Largely this is due to the fact that estimates are ensured131

to be within the parameter space, so that there is no pressing need for a reparameterisation.132

Lindstrom and Bates [19] described an EM algorithm for maximum likelihood and REML133

estimation in linear mixed models which utilised the Cholesky factorisation of the covariance134

matrices to be estimated. More recently, Meng and van Dyk [24] and van Dyk [41] proposed135

EM type algorithms which transformed the vector of random effects in the mixed model to136

a vector with diagonal covariance matrix, showing that substantial reductions in numbers137

of iteration could be achieved. The transformation utilised was the inverse of the Cholesky138

factor of the covariance matrix among random effects, and parameters estimated were the139

elements of the Cholesky factor.140

2.3 Parameter expansion141

Probably the most interesting proposal among the modern ‘fast’ EM type methods is the142

Parameter Expanded (PX) algorithm of Liu et al. [20]. Like the approach of Meng and van143

Dyk [24] it involves conceptual rescaling of the vector of random effects. However, there are144

no specific assumptions about the structure of the matrix α defining the transformation.145
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Liu et al. [20] considered application of PX-EM for a number of examples, including a146

random coefficient, mixed model. Foulley and van Dyk [6] derived detailed formulae for147

PX-EM based on the standard mixed model equations for common univariate models. As148

for the standard EM algorithm, the likelihood is ensured to increase in each iterate of the149

PX-EM algorithm [20].150

Briefly, the basic procedure for PX-EM estimation of variance components is as follows [6] :151

The E-step of the PX-EM algorithm is the same as for standard EM. Similarly, in the first152

part of the M-step, covariance matrices for random effects, Σ, are estimated ‘as usual’, i.e.153

assuming α is equal to an identity matrix. Subsequently, the elements of α are estimated154

as additional parameters - this represents the expansion of the parameter vector. However,155

expansion is only temporary : pre- and postmultiplying the estimate of Σ by α̂ and α̂′,156

respectively, then yields an updated estimate of Σ, effectively collapsing the parameter157

vector again to its original size. Finally, estimates of the residual covariances are obtained158

as in the standard EM algorithm, after adjusting estimates of random effects for α̂.159

For most algorithms, computational requirements of REML estimation increase with the160

number of parameters, both per iterate and overall. Hence it seems somewhat counter-161

intuitive to estimate a substantial number of additional parameters. For instance, if we have162

q traits in a multivariate analysis, there are q(q + 1)/2 elements of Σ to be estimated and,163

making no assumptions about the structure of α, an additional q2 elements of α. However,164

the PX-EM algorithm can yield dramatically faster convergence than the standard EM165

algorithm [6, 20].166

Loosely speaking, the efficacy of the PX-EM algorithm can be attributed to the additional167

parameters capturing ‘information’ which is not utilised in the standard EM algorithm. In168

each iterate of the EM algorithm we treat the current values of the parameters as if they169

were the ‘true’ values, i.e. the values maximising the likelihood. Hence, before convergence,170

in the E-step the ’missing data’ are imputed and the expectation of the complete likelihood171

is computed with error. This error is larger, the further away we are from logLmax. The172

deviation of α̂ from the identity matrix gives a measure of the error. Adjusting the estimate173

of Σ for α̂ effectively involves a regression of the vector of parameters on the vector of174

differences between α̂ and its assumed value in the E-step. Liu et al. [20] described this as175

a ‘covariance adjustment’.176
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3 Algorithms177

3.1 Standard EM178

Consider the standard linear, mixed model179

y = Xβ + Zu + e (1)

with y, β, u and e denoting the vectors of observations, fixed effects, random effects and180

residuals, respectively, and X and Z the corresponding incidence matrices.181

The model given by (Eq. 1) is general and encompasses multiple random effects, as well as182

standard multivariate and random regression models. However, for simplicity of presenta-183

tion, let u represent a single random effect for q traits, with subvectors ui for i = 1, . . . , q184

and covariance matrix G = ΣU ⊗ A. For u representing animals’ genetic effects, A is185

the numerator relationship matrix. ΣU is the q × q covariance matrix between random186

effects with elements σU ij, and ⊗ denotes the direct matrix product. Assume u and e are187

uncorrelated, and let Var(e) = R. Further, let ΣE be the matrix of residual covariances188

with elements σE ij for i, j = 1, . . . , q. Ordering e according traits within individuals, R189

is block-diagonal with the k−th block equal to the submatrix of ΣE corresponding to the190

traits recorded for individual k.191

This gives the vector of parameters to be estimated, θ′ =
(
vech (ΣU)′ | vech (ΣE)′

)
of length192

p (with vech the operator which stacks the columns in the lower triangle of a symmetric193

matrix into a vector [e.g. 9]). Standard formulation considers the likelihood of θ, given the194

data. Vectors u and β in (Eq. 1) cannot be observed and are thus treated as ‘missing data’195

in the EM algorithm. In the E-step, we need to compute the expectation of the complete196

data log likelihood (logQ), i.e. the likelihood of θ given y, β and u. This can be split into197

a part due to the random effects, u, and a part due to residuals, e, [6],198

logQ = −1

2

(
const + E

[
log |G|+ u′G−1u + log |R|+ e′R−1e

])
(2)

= const + logQU + logQE

with e = y −Xβ − Zu. Each part comprises a quadratic form in the respective random199

vector and the inverse of its covariance matrix, and the log determinant of the latter.200
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Strictly speaking, (Eq. 2) (and the following equations) should be given conditional on θ201

being equal to some current value, θt, but this has been omitted for clarity; see, for instance,202

Foulley and van Dyk [6] or Ng et al. [34] for more rigorous formulations.203

In the M-step, we take first derivatives of logQ with respect to the elements of θ, θk. The204

resulting expressions are equated to zero and solved for θk, k = 1, . . . , p.205

3.1.1 Random effects covariances206

For θk = σU ij and ∆U
ij = ∂ΣU/∂σU ij,207

∂logQU

∂σU ij

= −1

2

(
tr

(
Σ−1

U ∆U
ij ⊗ I

)
− E

[
û′ (Σ−1

U ∆U
ijΣ

−1
U ⊗A−1

)
û
])

= 0. (3)

Matrix ∆U
ij has elements of unity in position i, j and j, i, and zero otherwise. With all sub-208

vectors of u of the same length, NU , and using that E
[
û′

iA
−1ûj

]
= û′

iA
−1ûj+tr

(
A−1CUU

ij

)
,209

we obtain – after some rearranging – the well known estimators [11]210

σ̂U ij =
(
û′

iA
−1ûj + tr

(
A−1CUU

ij

))
/NU (4)

where C is the inverse of the coefficient matrix in the mixed model equations (MME)211

pertaining to (Eq. 1), and CUU
ij is the submatrix of C corresponding to the vectors of212

random effects for traits i and j, ui and uj.213

3.1.2 Residual covariances214

Similarly, estimators for the residual covariances σE ij are obtained setting ∂logQE/∂σE ij =215

0. Inserting R−1R into the trace term (in Eq. 3) and rearranging, yields [11]216

tr (EijR) = ê′Eij ê + tr (EijWCW′) (5)

with Eij = R−1 (∂R/∂σE ij)R−1 and W = (XZ).217

Expand ΣE as
∑q

m=1

∑q
n=m ∆E

mnσE mn, with ∆E
mn = ∂ΣE/∂σE mn. Using that R is block-218

diagonal, we can then rewrite the left hand side of (Eq. 5) as219

tr (EijR) =

q∑
m=1

q∑
n=m

N∑
k=1

tr
(
Σ−1

E (∆E
ij)

k Σ−1
E (∆E

mn)k
)

σE mn =

q∑
m=1

q∑
n=m

FE
ij,mn σE mn (6)
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with N the number of individuals, and (∆E
ij)

k for the k−th individual equal to ∆E
ij with220

rows and columns pertaining to traits not recorded set to zero. Likewise, the right hand221

side of (Eq. 5) can be accumulated across individuals,222

ê′Eij ê + tr (EijWCW′) =
N∑

k=1

tr
((

êkêk′
+ XkCXXXk′

+ XkCXUZk′

+ZkCUXXk′
+ ZkCUUZk′

)
Σ−1

E (∆E
ij)

kΣ−1
E

)
= tEij (7)

with Xk, Zk and ek the sub-matrices and -vector of X, Z and e, respectively, for the223

k−th individual. This yields a system of q(q + 1)/2 linear equations to be solved to obtain224

estimates of θE = vech (ΣE)225

θ̂E = F−1
E tE (8)

with elements FE
ij,mn and tEij of FE and tE as defined in (Eq. 6) and (Eq. 7), respectively.226

3.2 PX-EM227

For the ‘Parameter Expanded’ EM algorithm, (Eq. 1) is reparameterised to228

y = Xβ + Z (I⊗α)u+ + e (9)

with Var (u+) = Σ+
U ⊗ A. The elements of α represent the additional parameters to be229

estimated, i.e. the expanded parameter vector is Θ′ =
(
vech(Σ+

U)′ | vech(ΣE)′ | vec (α)′
)

230

(with vec the operator which stacks the columns of a matrix into a vector [9]). Depending231

on assumptions on the structure of α, there are up to q2 additional parameters.232

In the E-step, logQ is conditioned on α = α0. Choosing α0 = I, the E-step is identical to233

that described above for the standard EM algorithm, i.e. the difference between u+ and u234

is merely conceptual. This implies that steps to set up and manipulate the MME are largely235

‘as usual’, making implementation of the PX-EM algorithm a straightforward extension to236

standard EM. For the reparameterised model (Eq. 9), e = y−Xβ − Z (I⊗α)u+. Hence,237

for Θk = αij only derivatives of logQE are non-zero. For unstructured α, ∂logQE/∂αij238

has a single non-zero element of unity in position i, j. As shown by Foulley and van Dyk239

[6], equating derivatives to zero then yields – after some manipulations – a linear system of240
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q2 equations to be solved, θ̂α = F−1
α tα with θα = vec(α). Elements of Fα and tα are241

Fα
ij,mn = tr

(
Z′

jR−1Zn

(
û+

m (û+
i )′ + CUU

mi

))
(10)

tαij = û+
i Z′

jR−1y− tr
(
Z′

jR−1X
(
β̂ (û+)′ + CXU

i

))
(11)

where u+
i and Zi denote the subvector and -matrix of u+ and Z, respectively, for trait i,242

and CXU
i is the submatrix of C corresponding to the fixed effects and random effects levels243

for trait i.244

Σ+
U is estimated assuming α = I, i.e. estimators are as given in Section 3.1.1 (replacing245

σU ij with σ+
U ij). Similarly, estimates of the residual covariances are obtained as for the246

standard EM algorithm (Section 3.1.2). Foulley and van Dyk [6] recommended to use247

ê = y −Xβ̂ − Z (I⊗ α̂) û+, i.e. to adjust for the current estimate α̂ 6= I. The M-step is248

completed by obtaining estimates for ΣU , collapsing Θ into θ. The reduction function is249

Σ̂U = α̂ Σ̂+
U α̂′ [20].250

3.3 Reduced rank estimation251

Considering the direct estimation of principal components (PCs), Meyer and Kirkpatrick252

[29] reparameterised (Eq. 1) to253

y = Xβ + Z (I⊗Q)u? + e = Xβ + Z?u? + e (12)

The eigenvalue decomposition of the covariance matrix among random effects is ΣU =254

EΛE′, with E the matrix of eigenvectors of ΣU and Λ the diagonal matrix of corresponding255

eigenvalues, λi. As it is standard practice, let eigen-vectors and -values be in descending256

order of λi.257

For Q = E, u? comprises random effect values for the PCs of the q traits considered.258

For Q = EΛ1/2, PCs are standardised to variances of unity and ΣU = QQ′. This is259

the parameterisation used by Meyer and Kirkpatrick [29], who truncated Q to columns260

1, . . . , r < q to obtain reduced rank estimates of ΣU . A more convenient alternative is261

Q = L with L the Cholesky factor of ΣU . This uses that L = EΛ1/2T with TT′ = I [9].262

Assuming that the Cholesky decomposition has been carried out pivoting on the largest263

diagonals, this implies that we can obtain reduced rank estimates of a matrix considering264

the leading PCs only, by estimating the non-zero elements of corresponding columns of L.265
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At full rank (Eq. 12) gives an equivalent model to (Eq. 1). Truncating Q to the first r < q266

columns, yields an estimate of ΣU which has, at most, rank r. Clearly, (Eq. 12) is of the267

same form as (Eq. 9). However, there is a major conceptual difference : essentially, the rôles268

of extra parameters and those of interest are reversed. The ‘modifiers’ of Z are now the269

parameters to be estimated, rather than auxiliary quantities. Conversely, the covariance270

matrix of random effects, Var(u?) is assumed to be an identity matrix for standard EM and271

AI REML algorithms. In a PX-EM algorithm, these covariances are estimated as additional272

parameters, Var(u?) = α?, which is symmetric with r(r + 1)/2 elements α?
ij.273

3.3.1 Random effects parameters274

The mechanics of taking derivatives of logQE with respect to the elements of Q are analo-275

gous to those for αij in the full rank PX-EM algorithm. However, there is no conditioning276

on Q = Q0 = I. Consequently, we need to distinguish MME involving Z and Z?. For277

generality, let Θk = f (qij) where qij is the ij−th element of Q and f (·) is some func-278

tion of qij (but not involving any other elements of Q). This gives a matrix of derivatives279

∆Q
ij = ∂Q/∂Θk which has a single non-zero element ωij = ∂qij/∂f (qij) in position i, j. In280

most cases, ωij is unity. However, if we choose to take logarithmic values of the diagonal281

elements of L, ωii = log(qii).282

For ∂Z?/∂Θk = Z
(
I⊗∆Q

ij

)
,283

∂logQE

∂Θk

= E
[
ωijû?′

(
I⊗∆Q

ij

)′
Z′R−1ê

]
. (13)

Using that e = y−Xβ−Z?u?, expanding Q to Q =
∑r

m=1

∑q
n=m ∆Q

mnf (qmn) and equating284

(Eq. 13) to zero then yields, after some rearrangement,285

r∑
m=1

q∑
n=m

ωmn tr
(
Z′

jR−1ZnE
[
û?

mû?
i
′
])

f (qmn) = û?
i
′Z′

jR−1y− tr
(
Z′

jR−1XE
[
β̂û?

i
′
])

(14)

with u?
i the subvector of u? for the i−th principal component. Subscripts ranges, i =286

1, . . . , r and j = i, . . . , q as well as m = 1, . . . , r and j = m, . . . , q in (Eq. 14), pertain to Q287

consisting of the first r columns of the Cholesky factor L, and are readily adapted to other288

choices of Q.289

This gives a system of r(2q − r + 1)/2 linear equations to estimate θQ consisting of the290
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non-zero elements of vech (Q),291

FQ θ̂Q = tQ (15)

with elements292

FQ
ij,mn = ωmn tr

(
Z′

jR−1Zn

(
û?

mû?
i
′ + CUU

mi

))
(16)

tQij = û?
i
′Z′

jR−1y− tr
(
Z′

jR−1X
(
β̂ û?

i
′ + CXU

i

))
. (17)

C in (Eq. 16) and (Eq. 17) is the inverse of the coefficient matrix in the MME pertaining to293

(Eq. 12), i.e. involving Z? rather than Z, and with numbers of equations proportional to r294

rather than q, with submatrices as defined above. Similarly, u?
i and β are the (sub-)vectors295

of effects in (Eq. 12). Terms Z′
jR−1Zn, Z′

jR−1X and Z′
jR−1y, however, are submatrices296

and -vectors of the data part of coefficient matrix and right hand side of the mixed model297

equations on the ‘original scale’, i.e. pertaining to (Eq. 1). Hence, implementation of an EM298

algorithm for reduced rank estimation requires part of a second set of MME – proportional299

to the number of traits q – to be set up for each iterate.300

3.3.2 PX-EM : Auxiliary parameters301

Estimates of α? can be obtained in the same way as the estimates of covariance components302

due to random effects in the standard EM algorithm (see Section 3.1.1 above).303

α̂?
ij =

(
û?

i
′A−1û?

j + tr
(
A−1CUU

ij

))
/NU (18)

for i = 1, . . . , r and j = i, . . . , r, and with C as in (Eq. 16) and (Eq. 17).304

Updated estimates of Q are then obtained as the first r columns of the Cholesky decom-305

position of Q̂α̂?Q̂
′
.306

3.3.3 Residual covariances307

Again, residual covariances are estimated as in the standard EM algorithm (Section 3.1.2),308

but with ê = y−Xβ̂ − Z?û?.309
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4 Application310

4.1 Examples311

The performance of algorithms described above was examined for three, relatively small312

practical examples analysed previously. Table I summarises characteristics of the data and313

analyses. Further details can be found in the respective publications. Table

I here

314

Example 1 (from Meyer and Kirkpatrick [29]) consisted of four ‘carcass traits’ measured315

by live ultra-sound scanning of beef cattle in a single herd. Treating records for males and316

females as different traits, resulted in 8 traits in a multivariate analysis. With distinct317

subsets, the 16 residual covariances between traits measured on animals of different sex318

were zero. The model of analysis was a simple animal model, fitting animals’ direct additive319

genetic effects as the only random effect.320

Example 2 comprised records for birth, weaning, yearling and final weights of Polled Here-321

ford cattle in the Wokalup selection experiment [see 32]. While most animals had records322

for the first two weights, only replacement animals remaining in the herd after weaning had323

records for the later weights (35–40% of those with birth weight). The model of analysis324

fitted direct and maternal additive genetic effects, assuming direct-maternal covariances325

were zero, as well as maternal permanent environmental effects as random effects.326

Example 3 considered repeated records for mature cow weights, also from the Wokalup327

selection experiment, taken between 19 and 84 months (546 to 2554 days) of age. Cows were328

weighed monthly, except during the calving season. This resulted in up to 63 records per329

animal, with 75% of cows having at least 13 records. With short mating and calving periods330

in the experiment, there was a strong association between age at and month of weighing.331

Previous analyses at the phenotypic level [25] thus had found a strong annual, cyclic pattern332

in both weights and variances. Hence, analyses fitted a random regression (RR) on quadratic333

B-splines of age at weighing, with 11 equi-distant knots at 6 months intervals resulting in334

13 RR coefficients, for both additive genetic and permanent environmental effects of the335

animal. Measurement error variances were assumed to be heterogeneous with 12 classes,336

corresponding to the calendar month of recording.337
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4.2 Analyses338

Full rank and RdR estimates of covariance matrices were obtained by REML, employing an339

AI, standard EM and PX-EM algorithm as well as a combination, consisting of 4 initial it-340

erates of the PX-EM algorithm followed by AI (PX+AI). Residual covariance matrices were341

assumed to have full rank throughout. The same set of starting values for the covariance342

components to be estimated was used in all analyses for a particular example. Calculations343

were carried out using our REML program Wombat [28].344

All analyses parameterised to the leading columns of the Cholesky decomposition of the345

covariance matrices to be estimated, pivoting on the largest diagonal elements. PX-EM346

and standard EM-algorithms for RdR estimation were implemented as described above347

(Section 3.3). In calculating the sparse inverse of the coefficient matrix (C), only the348

elements corresponding to the non-zero elements in the Cholesky factorisation of the original349

matrix were determined. Any other elements which might have been required to compute350

the terms in (Eq. 14) were treated as if they were zero. Convergence was assumed to have351

been reached when the change in logL between iterates (∆Las less than 10−6 or if the352

relative change in the vector of parameters to be estimated,
√
|θ̂

t
− θ̂

t−1
|/|θ̂

t
|, was less353

than 10−7 [6] (with |·| denoting the vector norm, and θ̂
t
the estimate of θ from iterate t).354

The AI algorithm used was as described by Meyer and Kirkpatrick [29], but parameterising355

to the leading columns of Cholesky factors (see Section 3.3) and calculating the average356

information as described in the appendix. Pivots were constrained to a minimum value of357

10−6 and transformed to logarithmic scale if small values (< 0.2) were encountered during358

the course of iterations. In each iterate, logL was forced to increase by scaling step sizes359

if necessary, using the line search procedure of Dennis and Schnabel [4]. In addition, the360

AI matrix was ensured to be ‘safely’ positive definite, by adding an appropriate multiple of361

the identity matrix to it, if the smallest eigenvalue was less than the minimum of 0.002 and362

10−6 × λ1, with λ1 representing the largest eigenvalue of the AI matrix. The AI algorithm363

was deemed to have converged if the ∆L0−5 and the corresponding Newton decrement [1]364

was greater than −0.01.365
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4.3 Results366

4.3.1 Example 1367

Starting values for covariance components for Example 1 were the set of ‘bad’ values used by Table

II here

368

Meyer [28] to compare PX-EM, EM and AI algorithms for standard, full-rank multivariate369

REML analyses. These consisted of estimates from a four-trait analyses for measures on370

females, repeated for males and all genetic covariances set to 0.01. Analyses were carried out371

fitting from 1, . . . , 8 principal components for additive genetic effects. Characteristics of the372

convergence patterns are summarised in Table II, and Figure 1 shows values of the relative373

log likelihood, i.e. logL deviated from the highest value found across all corresponding374

analyses (logLmax), for selected numbers of PCs fitted. With very stringent convergence375

criteria, almost all analyses for a given number of PCs converged to the same value, up to376

the third decimal. Figure

1 here

377

Both EM and PX-EM required hundreds of iterates to locate the maximum of logL. With a378

linear convergence pattern, reaching a stage where the ∆Lropped to less than 10−5 generally379

doubled the amount of iterates required, compared to a less stringent value of 0.005, while380

‘improving’ logL by less than 0.04. For all orders of fit, estimates of the matrix of auxiliary381

parameters for PX-EM, α?, approached an identity matrix in relatively few iterates. While382

the PX-EM yielded slightly bigger improvements in logL than the EM algorithm initially,383

there was only little advantage over standard EM overall, even when all PCs were fitted.384

In stark contrast, there were substantial differences between the two algorithms for full385

rank estimation on the original scale [28], i.e., as suggested by Meng and van Dyk [23],386

parameterisation to elements of the Cholesky factor greatly improved convergence of the387

EM algorithm.388

In contrast, the AI algorithm converged in few iterates. With a quadratic convergence389

pattern, generally only a few additional iterates were required when increasing the strin-390

gency of the convergence criterion tenfold or more. The last PC for the 8 traits was very391

small (< 0.001). This yielded an AI matrix with small minimum eigenvalue, so that a392

constant needed to be added to its diagonal and multiple steps requiring step size scaling.393

Omitting this PC (Fit 7) removed the need for these control measures and improved the394

rate of convergence. Reducing the rank of fit further had comparatively little effect on the395
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convergence of the AI algorithm, as long as the eigenvalues corresponding to the PCs not396

fitted were small. Fitting less than 5 PCs, however, there was a trend for the number of397

iterates required to increase with the number of PCs omitted. This was especially evident398

for an analysis fitting 2 PCs (see Figure 1). While not causing the need for step size scaling399

or modification of the AI matrix, this was due to a sequence of small steps. For these sce-400

narios, a few initial iterates of the PX-EM algorithm tended to ‘bypass’ this area of search401

and thus reduced the number of iterates required by roughly 40%.402

4.3.2 Example 2403

For Example 2, analyses were carried out fitting all 4 PCs for direct genetic (A), maternal404

genetic (M), permanent environmental (C) and residual (E) covariance matrices (Model405

4444), fitting 3 PCs for A and M and 2 PCs for C (Model 3324), and fitting 2 PCs for A,406

M and C (Model 2224), yielding 40, 33 and 30 parameters to be estimated, respectively.407

Convergence characteristics are summarised in Table III. As for Example 1, the PX-EM408

and EM (not shown) algorithms required substantial numbers of iterates to locate the409

maximum of logL, while the AI algorithm converged in about 20 iterates. With multiple410

random effects and highly correlated traits, both RdR analyses shown omitted only PCs411

with small eigenvalues and thus converged more quickly than the full rank analysis. Table

III

here

412

4.3.3 Example 3413

For Example 3, RdR analyses considered 7 and 9 PCs (Model 79), 5 and 7 PCs (Model414

57), and 5 PCs (Model 55) for for both genetic and permanent environmental covariances,415

respectively [c.f. 26]. For this example, the number of iterates required for the (PX-)EM416

algorithm were excessive, especially for the analysis fitting only 5 PCs for both random417

effects. With relative ‘good’ starting values, full rank AI (Model 13 13) converged quickly418

despite representing a highly overparameterised model, requiring 30 iterates for ∆Lo drop419

below 0.0005 with a corresponding deviation from logLmax of −0.01; see Table III. For420

RdR analyses, the number of AI iterates required was again reduced at first (Model 79)421

but tended to increase when PCs with non-negligible eigenvalues were omitted. The latter422

was due to a series of AI steps with small, monotonically declining improvements in logL,423
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yielding more a linear than a quadratic convergence pattern.424

5 Discussion425

RdR estimation of covariance matrices decreases the number of parameters to be estimated.426

Moreover, omitting PCs with negligible eigenvalues alleviates problems associated with at-427

tempting to estimate parameters close to the boundary of their permissible space, and tends428

to improve convergence rates compared to full rank analyses. One of the main obstacles in429

multivariate analyses involving more than a few traits is the computational effort involved.430

While the size of the MME to be manipulated in REML estimation is proportional to the431

number of PCs fitted for random effects, the number of operations required in each iterate432

increases more than quadratically with the number of PCs. Thus even a small reduction433

in the number of PCs considered can have a dramatic effect on the computational require-434

ments [e.g. 27]. For example 1, for instance, total computing times required using the AI435

algoritm (with a convergence criterion of ∆L.0005) were 2678, 1076, 723 and 624 seconds436

for analyses fitting 8, 7, 6 and 5 PCs, respectvely (using a 64-bit dual core processor, rated437

at 2.6 Ghz). Together with more stability and faster convergence in estimation, the reduc-438

tion in computational requirements of RdR analyses greatly improves the scope for higher439

dimensional multivariate analyses.440

Caution is required, however, when reducing the number of PCs fitted beyond those with441

negligible eigenvalues. As results show, this can increase the number of REML iterates442

required. Moreover, estimates of both the directions and eigenvalues of the subset of PCs443

fitted tend to be biassed in this case [30].444

The examples chosen represent diverse and difficult analyses involving many parameters445

and, at full rank, somewhat overparameterised models, applied to relatively small data446

sets. All algorithms examined were capable of maximising logL. The AI algorithm gener-447

ally required substantially fewer iterates than the PX-EM or EM algorithm, but stringent448

control of the AI steps and care in choosing an appropriate parametersation were needed449

throughout. Earlier work [2, 28] considering the PX-EM algorithm for full rank estimation450

found it to be most useful in conjunction with the AI algorithm, replacing the first few iter-451

ates to reduce problems due to poor starting values or initial overshooting. As shown, the452
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PX-EM algorithm is readily adapted to RdR estimation, and again is most useful combined453

with the AI algorithm for scenarios where AI performs relatively poorly initially.454

6 Conclusion455

The PX-EM algorithm is a useful, additional ‘weapon’ in our armoury for REML estimation456

of variance components. Reduced rank estimation is highly appealing and can reduce the457

number of iterates required as well as the computational requirements per iterate, thus458

making multivariate analyses involving more than a few traits more feasible.459
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Appendix463

The rs−th element of the average information is calculated as b′
rPbs, with br = ∂V/∂θr Py,464

and projection matrix P = V−1−V−1X
(
X′V−1X

)− XV−1. Using that Py = R−1ê, gives465

for θr = qij466

br = Z
((

∆Q
ijQ

′ + Q(∆Q
ij)

′
)
⊗A

)
Z′R−1ê (19)

(in the notation of Section 3.3). For genetic effects, this requires the numerator relationship467

matrix which can be quite dense. Hence, (Eq. 19) is best evaluated in two steps, using that468

A = LAL′
A, with LA the Cholesky factor of A which can be set up from a list of pedigree469

information [e.g. 10].470
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Table I. Characteristics of the data structure and model for examples

Example 1 Example 2 Example 3

No. of traits or RRa coefficients 8 4 13
No. of records 20 171 8 845 28 637
No. of animals in data 5 605 3 743 908
No. of animals in pedigreeb 8 044 3 786 1 150
Random effects fittedc A A, M, C A, P
No. of covariance componentsd 56 40 194
Source [29] [32] [26]

aRandom regression
bAfter pruning
cA : direct additive genetic, M : maternal additive genetic, P : direct permanent environmental, and C

: maternal permanent environmental
dFor full rank analysis

23



K.M. May 11, 2007 PX-EM for PC models

Table II. Number of iterates (N) needed and deviation of log likelihood (logL) from best
value (D, multiplied by 1000) for change in logL between iterates to reach a minimum
value, and N for logL to reach a given D, for Example 1.

Fita Change in logL less than Deviation less than

0.00001 0.00005 0.00010 0.00050 -0.20 -0.10 -0.05

N D N D N D N D N N N

8 AIb 15 0c 14 0 13 0 11 -1 4 5 5
PX+AI 46 -1 24 -1 18 -2 14 -2 7 8 8
PX-EM 573 -1 374 -4 313 -8 205 -33 114 143 178
EM 600 -1 401 -4 338 -9 221 -35 124 156 196

7 AI 10 0 9 0 8 0 7 0 4 4 4
PX+AI 16 0 14 0 13 0 12 0 7 7 7
PX-EM 601 -1 402 -4 338 -9 219 -36 120 153 195
EM 604 -1 405 -4 342 -9 222 -36 122 156 198

5 AI 15 0 14 0 13 0 12 0 7 7 8
PX+AI 16 0 14 0 14 0 13 0 8 8 9
PX-EM 481 0 346 -2 301 -5 211 -26 115 144 177
EM 499 0 364 -2 318 -6 225 -27 126 157 192

3 AI 76 0 71 0 68 0 63 -1 46 49 51
PX+AI 40 0 35 0 33 0 28 -1 14 15 17
PX-EM 571 0 367 -4 299 -8 172 -37 86 111 150
EM 620 0 415 -4 348 -8 209 -40 105 142 191

2 AI 84 0 81 0 80 0 77 0 66 67 68
PX+AI 49 0 45 0 44 0 41 0 30 31 32
PX-EM 578 0 446 -2 402 -5 305 -28 195 232 271
EM 595 0 464 -2 419 -5 322 -28 210 249 289

aNo. of genetic principal components
bAI : average information, EM : expectation maximisation, PX-EM : parameter expanded EM, PX+AI

: 4 PX-EM steps followed by AI
cA value of 0 denotes a deviation < 0.001
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Table III. Convergence characteristics for Examples 2 and 3.

Fita Change in logL less than Deviation less than

0.00005 0.00010 0.00050 -0.20 -0.10 -0.05

Nb Db N D N D N N N

Example 2
4444 AIb 29 0 23 -1 15 -2 6 7 8

PX+AI 21 0 17 -1 16 -1 8 9 10
PX-EM 591 -8 500 -14 323 -55 190 259 353

3324 AI 21 0 21 0 18 0 11 12 13
PX+AI 20 0 20 0 19 0 12 12 13
PX-EM 546 -5 468 -10 284 -54 173 221 293

2224 AI 20 0 19 0 17 0 10 11 12
PX+AI 22 0 21 0 19 0 12 13 14
PX-EM 734 -2 701 -4 631 -21 535 564 593

Example 3
13 13 AI 62 -3 62 -3 30 -10 10 11 14

PX+AI 75 -2 52 -5 33 -10 16 17 19
PX-EM 1690 -38 1346 -61 792 -185 763 1062 1476

79 AI 25 -30 25 -30 25 -30 13 18 22
PX+AI 39 -1 33 -4 33 -4 15 20 22
PX-EM 3198 -36 2663 -72 1632 -320 1947 2422 2936

57 AI 60 0 56 0 48 -2 26 29 32
PX+AI 76 0 73 0 67 -1 46 50 53
PX-EM 7923 -22 7551 -47 3623 -1611 6818 7172 7518

55 AI 115 -1 107 -1 88 -6 47 54 62
PX+AI 116 -1 108 -1 89 -6 47 55 63
PX-EM 7250 -111 5605 -221 2689 -874 5828 7495 9249

aNumbers of principal components fitted for covariance matrices estimated, numbers for A,M,C and E
for Example 2, and A and R for Example 3; c.f. Table I

bsee Table II for abbreviations
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Figure 1. Change in relative log likelihood (logL) for Example 1 in the first 40 iterates
for various algorithms, fitting 8 (top left), 6 (top right), 4 (bottom left) and 2 (bottom
right) principal components.
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