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1 Introduction1

Estimation of genetic parameters, i.e. the partitioning of phenotypic variation between2

individuals into (co)variances due to genetic effects and other sources, is one of the basic3

tasks in quantitative genetics. Increasingly, recording schemes in livestock improvement4

programmes are becoming more sophisticated and detailed, along with a trend for breeding5

objectives to involve more and more components. This results in a continual growth in the6

number of traits of interest, and, in turn, necessitates increasingly complex, multivariate7

analyses considering more than just a few traits simultaneously.8

Advances in modelling, improvements of computational algorithms and of the correspond-9

ing software for estimation, paired with the capabilities of modern day computer hardware10

available have brought us to a point where large-scale analyses comprising numerous traits11

and records on tens of thousands of animals are within the realms of reality. For example,12

Tyrisevä et al. (2011) recently demonstrated that simultaneous estimation of the complete13

genetic covariance matrix required by Interbull, the international evaluation service for dairy14

bulls, for its multiple-trait across country evaluation is feasible, presenting multivariate anal-15

yses involving 25 traits with more than 100 000 sires and up to 325 parameters to be estimated.16

However, comparatively little attention has been paid to the problems associated with sam-17

pling variation that are inherent in multivariate analyses, and which increase dramatically18

with the number of traits and the number of parameters to be estimated.19

It has long been known that the eigenvalues of estimated covariance matrices are over-20

dispersed, i.e. that the largest sample eigenvalues are systematically biased upwards and the21

smallest values are biased downwards while their mean is expected to be unbiased (Lawley,22

1956). Moreover, a large proportion of the sampling variances of estimates of individual23
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covariances can be attributed to this excess variation (Ledoit and Wolf, 2004). The effects of24

this phenomenon are the more pronounced the narrower the ratio of the matrix dimension25

to the number of observations and the more similar the population eigenvalues are. Hill26

and Thompson (1978) showed in an early simulation study how this affected estimates of27

genetic covariance matrices and that it resulted in high probabilities of obtaining non-positive28

definite estimates.29

While modern, maximum likelihood (ML) based methods of estimation make efficient use30

of all the data and readily allow estimates of covariance matrices to be constrained to31

the parameter space (Harville, 1977), the problems of sampling variation remain. Even32

multivariate analyses based on relatively large data sets are thus likely to yield imprecise33

estimates, the more so the more traits are considered. At the other end of the spectrum, we34

have numerous scenarios where the numbers of records are invariably limited. This includes35

data for new traits of interest or traits which are difficult or expensive to measure but which36

may have substantial impact on selection decisions in livestock improvement programmes.37

A typical example for such data are carcass characteristics of meat producing animals,38

which are never recorded directly for parents of the next generation. Similarly, evolutionary39

biologist concerned with quantitative genetics of natural populations are usually restricted40

to rather small samples.41

Hence, any avenue to ‘improve’ estimates, i.e. to obtain estimates which are on average42

closer to the population values, is of considerable interest and should be given serious43

consideration. To begin with, we have accumulated a substantial body of knowledge about44

genetic parameters for various traits. However, typically this is completely ignored. While45

the Bayesian paradigm directly provides the means to incorporate such prior information,46

analyses concerned with the estimation of covariance components more often than not47

assume flat or uninformative priors (Thompson et al., 2005). Clearly, there is considerable48

scope for using this information more advantageously, especially for small samples arising49

in evolutionary studies of natural or laboratory populations (Kirkpatrick et al., 2011).50

Secondly, multivariate covariance matrices can often be modelled parsimoniously by impos-51

ing some structure. This decreases sampling variation by reducing the number of parameters52

to be estimated. Common examples are factor-analytic and reduced rank models or treating53

covariance matrices as ‘separable’, i.e. as the direct product of two or more smaller matrices;54

see Meyer (2009) for a detailed review. Finally, statistical techniques are available – often55

referred to as regularization methods – which substantially reduce sampling variance, albeit56
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at the expense of introducing some bias, and thus yield ‘better’ estimates. Interest in reg-57

ularized estimation for multivariate analyses and the trade-off between sampling variance58

and bias dates back to the Seventies and earlier, stimulated in particular by the work of Stein59

(e.g. James and Stein, 1961; Stein, 1975). Recently, there has been a resurgence in attention60

for applications involving estimation in very high-dimensional settings, in particular for61

genomic data (e.g. Huang et al., 2006; Warton, 2008; Yap et al., 2009; Witten and Tibshirani,62

2009).63

In spite of well established literature on regularized estimation of covariance matrices, there64

has been comparatively little interest in this approach in the context of estimating genetic65

parameters in quantitative genetics. An early proposal, due to Hayes and Hill (1981), has66

been to shrink the canonical eigenvalues in a one-way analysis of variance towards their mean67

and thus to reduce sampling variation. This yielded an estimate of the genetic covariance68

matrix which was a weighted combination of the standard (i.e. not regularized) estimate69

and the phenotypic covariance matrix multiplied by the mean eigenvalue. The authors thus70

described their method as ‘bending’ the genetic towards the phenotypic covariance matrix.71

Hayes and Hill (1981) presented a simulation study demonstrating that ‘bending’ could72

substantially increase the achieved response to selection based on an index derived using73

the modified estimates. However, other than in forcing covariance matrices obtained by74

pooling estimates from multiple sources to be positive definite, their method has found little75

application, as there were no clear guidelines on how to choose the amount of shrinkage to76

be applied.77

Recently, Meyer and Kirkpatrick (2010) proposed to employ penalized restricted maximum78

likelihood (REML) to obtain ‘better’ estimates of genetic covariance matrices, and showed79

that imposing a penalty proportional to the variance among the canonical eigenvalues acted80

analogously to ‘bending’. They demonstrated by simulation that this resulted in estimates81

of genetic parameters from multivariate analyses which had greatly reduced sampling and82

mean square errors, and, moreover, that this held not only for the paternal half-sib de-83

sign considered by Hayes and Hill (1981), but equally for animal model analyses with a84

complicated pedigree structure and many different types of covariances between relatives.85

This paper extends the approach of Meyer and Kirkpatrick (2010) to different types of penal-86

ties and, in an extensive simulation study, examines the performance of various strategies87

to determine the amount of penalization to be applied. To begin with, we briefly review88

the underlying statistical principles and outline a penalized maximum likelihood estimation89
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scheme, presenting a number of suitable choices of penalties. This is followed by a simula-90

tion study to compare the efficacy of different types of penalty and schemes to estimate the91

tuning factor required, considering different numbers of traits and sample sizes. The paper92

concludes with a discussion and recommendations for practical applications.93

2 Penalized maximum likelihood estimation94

2.1 Improved estimation95

The quality of a statistical estimator is generally quantified by some measure of the difference96

between the estimator and the true value, or loss. A widely used quantity is the mean square97

error. This is a quadratic loss, comprised of the sampling variance and the square of the bias98

in the estimator. We talk about improving an estimator when we are able to modify it in99

some way so that, on average, it is closer to the true value, i.e. has reduced loss. Usually this100

involves a trade-off between a reduction in sampling variance and additional bias.101

For covariance matrices, commonly employed measures of divergence are the entropy (L1)102

and quadratic (L2) loss (James and Stein, 1961):103

L1

(
Σ, Σ̂

)
= tr

(
Σ−1Σ̂

)
− log

∣∣∣Σ−1Σ̂
∣∣∣ − q and L2

(
Σ, Σ̂

)
= tr

(
Σ−1Σ̂ − I

)2
(1)

where Σ and Σ̂ denote a covariance matrix of size q × q and its estimator, respectively, and q104

represents the number of traits.105

A reduction in loss can often be achieved by regularizing estimators. In broad terms, regular-106

ization describes a scenario where estimation for somewhat ill-posed or overparameterized107

problems is improved through use of some form of additional information. Frequently the108

latter involves a penalty for the deviation from a desired outcome. For example, in modelling109

curves using splines a ‘roughness penalty’ is employed to place preference on simple, smooth110

functions (Green, 1998). Well known forms of regularization are ridge regression (Hoerl and111

Kennard, 1970) and the LASSO (Least absolute shrinkage and selection operator; Tibshirani,112

1996, 2011). Whilst these methods were originally developed to encourage shrinkage of113

regression coefficients, corresponding applications for the estimation of high-dimensional114

covariance matrices have been described; see Meyer and Kirkpatrick (2010) for a review and115

references.116
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2.2 Penalizing the likelihood117

Consider a simple ‘animal model’ for q traits, y = Xb + Zg + e with y, b, g and e the vectors118

of observations, fixed effects, additive genetic and residual effects, respectively, and X and119

Z the corresponding incidence matrices. Let ΣG and ΣE denote the matrices of additive120

genetic and residual covariances among the q traits. This gives a vector of parameters to be121

estimated, θ, of length q(q + 1) comprising the distinct elements of ΣG and ΣE. Further, let122

Var
(
g
)

= ΣG⊗A = G, where A is the numerator relationship matrix between individuals. Let123

Rk denote the sub-matrix of ΣE corresponding to the traits recorded for the k−th individual.124

This gives Var (e) =
∑+

k Rk = R, where ‘
∑+’ is the direct matrix sum. The phenotypic125

covariance matrix of the vector of observations is then Var
(
y
)

= ZGZ′ + R = V, and the126

pertaining REML log likelihood is, apart from a constant,127

log L (θ) = −1
2

(
log |V| + log

∣∣∣X′0V−1X0

∣∣∣ + (y − Xb
)′V−1 (y − Xb

))
(2)

for X0 a full-rank submatrix of X (e.g. Harville, 1977). Regularized estimates can be obtained128

by maximizing the penalized likelihood129

log LP (θ) = log L (θ) − 1
2 ψP (θ) (3)

where the penalty P (θ) is a selected function of the parameters, aimed at reducing loss in130

their estimates, and ψ is a tuning factor which specifies the relative emphasis to be given to131

the penalty compared to the usual, unpenalized estimator. For ψ = 0, this simplifies to the132

standard, unpenalized likelihood. Here, the factor of ½ in (Eq. 3) is for algebraic consistency133

and could be omitted.134

A general way to select a penalty is to specify a prior distribution for the parameters to be135

estimated for a suitable choice of parameterisation. The penalty can then be obtained as136

minus the logarithmic value of the density of the prior. Hence, penalizing the likelihood137

provides a direct link to Bayesian estimation, with the tuning factor performing an analogous138

rôle to the degree of belief attached to the prior. Meng (2008) described penalized estimation139

as a way of “enjoying the Bayesian fruits without paying the B-club fee”.140

2.2.1 Penalties on eigenvalues141

Recognition of the systematic upwards bias in the largest and downwards bias in the smallest142

eigenvalues of estimated covariance matrices early on has led to the development of various143
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improved estimators which modify the eigenvalues in some fashion whilst retaining the144

corresponding eigenvectors. As the mean eigenvalue is expected to be unbiased, a specific145

proposal has been to regress all eigenvalues towards their mean in order to reduce their146

excessive spread. This is equivalent to assuming eigenvalues have a prior that is a Normal147

distribution.148

As outlined above, Hayes and Hill (1981) proposed to apply this type of shrinkage to the149

canonical eigenvalues (λi), i.e. the eigenvalues of Σ−1
P ΣG, with ΣP = ΣG + ΣE the phenotypic150

covariance matrix. The equivalent to bending in a (RE)ML framework can be obtained by151

placing a penalty proportional to the variance among the estimated canonical eigenvalues152

on the likelihood (Meyer and Kirkpatrick, 2010):153

Pλ ∝ tr
(
Λ − λ̄I

)2
with λ̄ = tr

(
Λ
)
/q (4)

forΛ = Diag
{
λ̂i

}
. The canonical decomposition givesΣG = TΛT′ and the residual covariance154

matrix, ΣE = T(I −Λ)T′, with I an identity matrix and T the matrix of eigenvectors of Σ−1
P ΣG155

scaled by a matrix square root of ΣP. Hence, Pλ can be thought of as penalizing both ΣG and156

ΣE at the same time.157

A related penalty, P `
λ , is obtained by penalizing the eigenvalues on the logarithmic scale,158

i.e. defining Λ = Diag
{

log(λ̂i)
}

. This is analogous to the log eigenvalue posterior mean159

shrinkage estimator considered by Daniels and Kass (2001) for a single matrix. Placing a160

quadratic penalty on (1 − λi) is equivalent to penalizing λi, but this does not hold on the log161

scale. Hence a third penalty is162

P ` 2
λ ∝ tr

(
Λ1 − λ̄1I

)2
+ tr

(
Λ2 − λ̄2I

)2
(5)

for Λ1 = Diag
{

log(λ̂i)
}

and Λ2 = Diag
{

log(1 − λ̂i)
}

, with λ̄i = tr
(
Λi

)
/q.163

For ΣG positive semi-definite, the canonical eigenvalues lie in the interval [0, 1]. Hence a164

natural alternative to a Normal prior is the Beta distribution, which is defined on this domain165

and is thus frequently used as prior for binomial proportions in a Bayesian setting. It has166

two shape parameters, α > 0 and β > 0, and probability density function167

p
(
x
)

=
Γ
(
α + β

)
Γ
(
α
)
Γ
(
β
) xα−1

(
1 − x

)β−1
(6)

with Γ(·) denoting the Gamma function, and mean α/(α + β). Hence, for α = β the function168

p(x) is symmetric with mean at 0.5. For α > 1 and β > 1 it is uni-modal with probability169

mass increasingly concentrated at the mean as α and β increase. Figure 1 (a) illustrates this170
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for α = β = 2, . . . , 5. A restricted domain [x1, x2] (with x1 and x2 the lower and upper limits171

for x) can be taken into account by expanding p(x) to a four parameter function, replacing172

xα−1 and (1 − x)β−1 in (Eq. 6) with (x − x1)α−1 and (x2 − x)β−1, respectively, and scaling by173

(x2 − x1)−(α+β−1) (Evans et al., 2000). Alternatively, this can be achieved by replacing x in174

(Eq. 6) with x? = (x − x1)/(x2 − x1).175

The distribution of estimates of the canonical eigenvalues clearly depends on the population176

parameters and may well not cover the whole interval [0, 1]. As we expect standard estimates177

of eigenvalues to be over-dispersed, a suitable, if somewhat inflated, estimate of the range178

may be given by the estimates of the extreme values from an unpenalized analysis, i.e. for179

ψ = 0, denoted henceforth by a superscript of 0. Assuming eigenvalues are numbered180

in descending order of magnitude, this gives λ̂0
1 and λ̂0

q for the upper and lower bound,181

respectively. To utilise the standard form of the Beta distribution, as given in (Eq. 6), we then182

base the penalty on scaled values λ?i = (λ̂i − λ̂0
q)/(λ̂0

1 − λ̂
0
q). For chosen values α and β, this183

gives penalty184

P a
β ∝ (α − 1) log(λ?i ) + (β − 1) log(1 − λ?i ) (7)

A suitable choice might be α = β = 2, 3, . . . which implies a symmetric distribution for λ∗i185

with probability mass somewhat more spread out than a Normal distribution (c.f. Figure 1,186

(a))187

Alternatively, we may try to obtain estimates of the scale parameters from the unpenalized188

estimates of the canonical eigenvalues. Using that the mean and variance of the standard189

Beta distribution are α/(α + β) and αβ(α + β)−2(α + β + 1)−1, respectively, gives method of190

moment estimators α̃ = λ̄ν and β̃ = (1 − λ̄)ν, with ν = qλ̄(1 − λ̄)/
∑q

i=1(λ̂0
i − λ̄)2) − 1 (Evans191

et al., 2000) and λ̄ the mean of the λ̂0
i . This may result in estimates of α and β with are192

less than unity, implying probability distributions that are U- or J-shaped with a high mass193

at the extremes. To counteract effects of over-dispersion of the λ̂0
i and ensure a uni-modal194

Beta distribution, we thus choose to augment these values by a constant z, α̂ = α̃ + z and195

β̂ = β̃ + z. Figure 1 (b) demonstrates the effect that a scale parameter less than unity has196

on the probability distribution and how adding a constant of z=1 yields a prior with more197

appropriate shape. This gives penalty198

P b
β ∝ (α̂ − 1) log(λi) + (β̂ − 1) log(1 − λi) (8)

As above, we can combine estimates of the scale parameter with scaling to account for a199

range smaller than [0, 1] by replacing λi in (Eq. 8) with λ?i , yielding penalty P c
β .200
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Penalties considered so far implied that estimated eigenvalues were samples from a dis-201

tribution with common mean λ̄. However, while quadratic penalties on eigenvalues or202

eigenvalues transformed to logarithmic scale have been found to be highly effective when203

the corresponding population values were similar, they have been reported to result in sub-204

stantial over-shrinkage when the latter were spread apart (Daniels and Kass, 2001; Ledoit and205

Wolf, 2004; Meyer and Kirkpatrick, 2010). Hence, if population eigenvalues are markedly206

different, it may be advantageous to shrink towards individual targets. Ordering values207

sampled from a statistical distribution are according to size introduces a specific distribu-208

tion. The i−th order statistic of a q−variate sample is the i−th smallest value. Assuming a209

uniform distribution, the order statistics on the unit interval have marginal Beta distributions210

with scale parameters z+ i and z+q− i+1 for z = 0. Treating the scaled estimates of canonical211

eigenvalues as independent order statistics results in a penalty212

P d
β ∝

q∑
i=1

(z + i − 1) log(λ?i ) + (z + q − i) log(1 − λ?i ) for c = 0 (9)

Again we have allowed for a modifying constant z in (Eq. 9). For the distribution of order213

statistics this is z=0 . Figure 1 (c) shows the corresponding probability density functions214

for q = 5 variables. As illustrated this results in rather different distributions for different215

variables. A value of z > 0 causes individual distributions to be ‘squashed’ together, i.e.216

allows for a compromise between the assumption of a common mean for the λ?i and that of217

an even distribution over the unit interval. Figure 1 (d) demonstrates the effect of using z=1.218

2.2.2 Penalties on matrix divergence219

Motivated by the historical emphasis on the rôle of sample eigenvalues of covariance matri-220

ces, we have concentrated on penalties on these characteristics so far. A simple alternative221

is to consider a covariance matrix as a whole and its prior distribution, or to penalize the222

deviation from a specific target.223

A standard assumption in Bayesian estimation of covariance matrices is that of an Inverse224

Wishart prior distribution, as, for observations with a multivariate Normal distribution, this225

is a conjugate prior. It has probability density function p
(
Σ|Ω, ν

)
∝ |Σ|

1
2 (ν+q+1) exp

[
−

1
2 tr

(
Σ−1Ω

)]
226

(e.g Sorensen and Gianola, 2002), with Ω denoting the scale parameter and ν the degree of227

belief we assign to the prior. Omitting terms not depending on Σ orΩ and taking logarithms228

gives (ν + q + 1) log |Σ| + ν tr
(
Σ̂−1Ω

)
.229

Corresponding to the penalties ‘borrowing strength’ from the phenotypic covariance matrix230
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considered above, a penalty which regularizes Σ̂G by shrinking it towardsΣP can be obtained231

by substituting the latter for the scale matrix Ω. Adopting an empirical Bayes approach, as232

suggested by Meyer et al. (2011), we replaceΣP with its estimate from a standard, unpenalized233

(RE)ML analysis, Σ̂0
P. Further, replacing ν with the tuning factor ψ, gives a penalty234

PΣ ∝ C log |Σ̂G| + tr
(
Σ̂−1

G Σ̂
0
P

)
(10)

with C =
(
ψ + q + 1

)
/ψ. If C is approximated with unity, PΣ is proportional to the Kullback-235

Leibler divergence between Σ̂G and Σ̂0
P, which is the entropy loss L1(·) (Eq. 1) with Σ and236

Σ̂ exchanged (Levina et al., 2008). The relationship between PΣ and Pλ can be seen by237

rewriting (Eq. 11) in terms of the canonical decomposition which gives PΣ ∝ C
(
log |Λ̂| +238

log |T̂T̂
′

|

)
+tr

(
Λ̂
−1

T̂
−1
Σ̂0

PT̂
−T)

. Assuming that Σ̂0
P ≈ T̂T̂

′

, i.e. that the estimate of transformation239

and phenotypic covariance matrix are largely unaffected by penalised estimation, gives240

PΣ ∝ C log |Λ̂| + tr
(
Λ̂
−1)
∝
∑q

i C log
(
λ̂i

)
+ λ̂−1

i . This shows that PΣ implies a substantial241

penalty on the smallest canonical eigenvalues. Analogous to penalty P ` 2
λ , we may also242

consider to penalize both ΣG and ΣE using243

P 2
Σ ∝ C log |Σ̂G| + tr

(
Σ̂−1

G Σ̂
0
P

)
+ C log |Σ̂E| + tr

(
Σ̂−1

E Σ̂
0
P

)
(11)

Based on empirical evidence that estimates of genetic (rG ) and phenotypic (rP ) correlations244

are often similar, Cheverud (1988) proposed to substitute rP for rG if the data did not245

support accurate estimation of rG . Adopting this suggestion, Meyer and Kirkpatrick (2009)246

demonstrated that estimating ΣG and ΣE or ΣP by assuming a joint correlation structure247

resulted in highly parsimonious models and a dramatic reduction in mean square errors248

when the underlying assumptions were approximately true. Conversely, estimates could be249

substantially biased if they were not. A more flexible alternative is to penalize the divergence250

between estimates of the genetic (RG) and phenotypic correlation (RP) matrix, i.e. to shrink251

R̂G towards R̂0
P. Analogous to (Eq. 11), this can be achieved using a penalty252

Pρ ∝ C log |R̂G| + tr
(
R̂−1

G R̂0
P

)
(12)

or253

P 2
ρ ∝ C log |R̂G| + tr

(
R̂−1

G R̂0
P

)
+ C log |R̂E| + tr

(
R̂−1

E R̂0
P

)
(13)

More generally, this type of penalty can be used to shrink an estimated covariance matrix254

towards any chosen structure. This allows for a data-driven compromise between the255
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assumed structure and an unstructured matrix. For instance, Chen (1979) presented an256

empirical Bayesian approach to estimate a covariance matrix shrinking towards a prior257

assumed to have a factor-analytic or compound symmetric structure. More recently, Schäfer258

and Strimmer (2005) considered shrinkage towards a number of target matrices with diagonal259

structure or constant correlations. Within our penalized (RE)ML framework this can be260

achieved by substituting the structured matrix for the scale matrixΩ in (Eq. 11). This may be261

a suitable matrix chosen a priori or, in an empirical vein, an unpenalized estimate obtained262

from the data, imposing the structure selected.263

3 Simulation study264

3.1 Simulation set-up265

Data for a simple paternal half-sib design comprising s unrelated sires with n=10 progeny266

each were simulated by sampling from appropriate multivariate normal distributions for267

q=5 and q=9 traits. Sample sizes considered were s=50, 100, 150, 200, 300, 400, 600 and 1000.268

A total of 90 sets of population parameters, 60 for q=5 and 30 for q=9 traits were considered.269

Population parameters for q=5 were obtained by combining 12 sets of heritabilities (A to270

L) with 5 scenarios for genetic (rG ) and residual (rE ) correlations and phenotypic variances,271

labelled I to V . This resulted in 60 combinations, labelled A-I to L-V in the following.272

Similarly, 10 sets of heritabilities (M to V) for q=9 traits were combined with correlation273

scenarios I , V I and V II to yield combinations M-I to V-V II. Details for heritabilities and274

correlation scenarios are summarized in Table 1 and Table 2, respectively. Heritabilities were275

chosen to decline with trait number and represent a range of cases, from equal values for all276

traits to sets of values which not only spanned almost the entire interval from zero to unity277

but also were very unevenly distributed. Combined with correlation scenarios ranging from278

zero throughout to genetic correlations of 0.8, this yielded coefficients of variation among279

the corresponding canonical eigenvalues ranging from 0 to 175% (see Table 1). A total of280

1000 samples per case and sample size were obtained.281
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3.2 Analyses282

REML estimates of ΣG and ΣE for each sample were obtained for different penalties and283

tuning factors using a Method of Scoring algorithm to locate the maximum of log L (θ) or284

log LP (θ), followed by simple derivative-free search steps to ensure that convergence had285

been reached. This was done using a parameterisation to the elements of the canonical286

decomposition, λi and ti j ∈ T, as described by Meyer and Kirkpatrick (2010), restraining287

estimates of λi to the interval of [0.0001, 0.9999].288

A total of 12 penalties were examined. These comprised 8 penalties on the canonical eigen-289

values, Pλ, P `
λ , P ` 2

λ , P a
β for α=β=2, P b

β , P c
β , P d

β for z=0 and P e
β which is P d

β for z = 1, and290

4 penalties on matrices PΣ, P 2
Σ, Pρ and P 2

ρ , as described above (see Section 2.2). All these291

employed a single tuning factor. In addition, the effect of applying a different tuning factor292

to the parts of penalties P ` 2
λ , P 2

Σ and P 2
ρ corresponding to genetic and residual components293

were investigated.294

3.3 Estimating the tuning factor295

To determine the tuning factor (ψ̂) for each analysis, estimates of ΣG and ΣE, denoted as Σ̂ψG296

and Σ̂ψE , were obtained for a range of possible values for ψ. A total of 311 values were used,297

comprising 0 to 2 in steps of 0.1, 2.2 to 5 in steps of 0.2, 5.5 to 10 in steps of 0.5, 11 to 100 in298

steps of 1, 102 to 250 in steps of 2, 255 to 500 in steps of 5 and 510 to 1000 in steps of 10. The299

‘best’ value was then chosen using three different approaches.300

First, for comparison with previous work, knowledge of the population parameters was301

utilised. Strategy L1(ΣG) simply involved calculating the entropy loss in the estimate of ΣG302

for each tuning factor, selecting the value ofψ for which the loss in Σ̂ψG was minimized as best.303

In contrast, strategies V∞ and V1 considered the effect of penalization on both covariance304

matrices: For each ψ and estimates Σ̂ψG and Σ̂ψE the corresponding unpenalized log likelihood305

was calculated as306

log L (θ)ψ = −
1
2

[(
s − 1

)(
log |ΣB| + tr

(
Σ−1

B MB

))
+ s
(
n − 1

)(
log |ΣW | + tr

(
Σ−1

W MW

))]
(14)

with ΣW = Σ̂
ψ
E + 3

4 Σ̂
ψ
G and ΣB = ΣW + 1

4nΣ̂ψG. This requires validation ‘data’, i.e. matrices307

of mean squares and cross-products between (MB) and within (MW) sires. For strategy V1308

these were obtained by sampling one additional data set from the same distribution as the309

data for the analysis were sampled from. For strategy V∞, MB and MW were constructed310
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from the population parameters. This can be thought of as equivalent to sampling an infinite311

number of additional data sets for the same data structure, hence the notation V∞. For both312

strategies, the value of ψ which maximised log L (θ)ψ was then chosen as ψ̂.313

Secondly, K−fold cross-validation was used to estimate ψ using only the data available. This314

is a widely used strategy applicable to a range of problems; see, for instance, Hastie et al.315

(2001, Chapter 7). In brief, cross-validation involves splitting the data into so-called ‘training’316

and ‘validation’ sets. Analyses are then carried out for a range of values for the quantity317

to be determined (e.g. ψ) using the training data and a corresponding criterion to assess318

the quality of the estimates (e.g. residual sums of squares) is obtained using the validation319

data. For K-fold cross-validation the data is split into K subsets of approximately equal size.320

K analyses are then carried out for each value of ψ, with the i−th subset treated in turn as321

the validation set and the remaining K − 1 subsets forming the training set, and the tuning322

parameter is chosen based on the criterion averaged across the K validation sets.323

Here, data were split into K folds of approximately equal size by sequentially assigning324

complete sire families to subsets. For i=1,K, the i−th subset was set aside for validation. The325

remaining K−1 subsets together where used to obtain estimates Σ̂ψG and Σ̂ψE for all values of326

ψ considered. Corresponding values for the unpenalized likelihood, log L (θ)ψi (Eq. 14), in327

the validation data were then obtained and accumulated across folds. Finally, ψ̂ was chosen328

as the value for which the average likelihood,
∑K

i=1 log L (θ)ψi /K, was maximized. Values of329

K=2, 3, 5 and 10 were considered, with the corresponding strategies denoted as CV2, CV3,330

CV5 and CV10 in the following.331

The third approach used simply involved choosing ψ̂ as the largest value of ψ for which332

the reduction in the unpenalized likelihood due to penalization from the maximum at ψ=0,333

|log L (θ)ψ − log L (θ)0
|, did not exceed a selected value. Limits were chosen as the χ2

γ values334

(× 1
2 ) which would be employed in a likelihood ratio test of a single parameter with error335

probability γ, 0.82 for γ=0.2, 1.36 for γ=0.1, 1.92 for γ=0.05 and 2.51 for γ=0.025, referred to336

as strategies L20%, L10%, L5% and L2.5% subsequently.337
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3.4 Summary statistics338

As suggested by Lin and Perlman (1985), the effect of penalized estimation was evaluated339

as the percentage reduction in average loss (PRIAL) due to penalization,340

100
[
L̄1

(
ΣX, Σ̂0

X

)
− L̄1

(
ΣX, Σ̂

ψ̂
X

)]
/L̄1

(
ΣX, Σ̂0

X

)

with Σ̂0
X the standard, unpenalized REML estimate of ΣX and Σ̂ψ̂X the penalized estimate, for341

X = G,E and P and L̄1(·) the entropy loss (see (Eq. 1)), averaged over replicates.342

In addition, the absolute and relative bias (in %) for parameter θi were calculated as |θ̂i − θi|343

and 100 (θ̂i − θi)/θi, respectively.344

4 Results345

4.1 Comparing penalties346

Mean PRIAL values across all cases for individual covariance matrices and all penalties347

considered are summarized in Table 3 for a sample size of s=100. Using known population348

values (strategy V∞), reductions in average loss in estimates ofΣG achieved were substantial,349

ranging form about 60% to more than 72%. Somewhat lower levels overall for q=9 than q=5350

traits were, in part at least, due to the fact that the cases chosen for 9 traits involved a351

higher proportion of unfavourable scenarios, i.e. population values with substantially and352

unevenly spread canonical eigenvalues. The main exception was Pλ which penalized the353

untransformed canonical eigenvalues rather than their logarithmic values. For this penalty,354

PRIALs for estimates ofΣE were substantially higher than forΣG, suggesting that for strategy355

V∞ tuning parameter selection was more appropriate for the former.356

As found earlier by Meyer and Kirkpatrick (2010), taking logarithms of the canonical eigen-357

values (P `
λ ) greatly improved the efficacy of a penalty proportional to the variance among358

them. Because canonical eigenvalues are a function of both ΣG and ΣE, all penalties on the λi359

yielded marked improvements in estimates of ΣE simultaneous to that for ΣG. Considering360

log(1 − λi) in addition to log(λi) (P ` 2
λ and all P ·β) increased PRIALs for ΣE further without361

affecting estimates of ΣG detrimentally. Among the penalties invoking a Beta distribution362

for the canonical eigenvalues, those estimating the scale parameters tended to perform best.363

For q=5 traits, applying this to unscaled eigenvalues (P b
β ; see (Eq. 8)) yielded higher PRIALs364

13



K.M. June 8, 2011 Penalized estimates of genetic covariances

than scaling them in addition (P c
β ), but corresponding differences for q=9 were reversed and365

much smaller. A possible explanation is that for the smaller number of traits attempting to366

estimate both range and scale parameters exacerbated errors. Considering the quite different367

underlying assumptions, the similarity of results for P d
β and P e

β , i.e. the penalties based on368

the distribution of order statistics on the unit interval, and the other penalties assuming a369

common distribution of all λi was somewhat surprising.370

Whilst achieving comparable PRIALs, penalizing the difference between genetic and phe-371

notypic covariance or correlation matrices acted differently to penalties on canonical eigen-372

values. As to be expected, considering ΣG or RG only (PΣ and Pρ) yielded relatively small373

improvements in estimates of ΣE. Adding a corresponding penalty for the residual matrices374

(P 2
Σ and P 2

ρ ) increased PRIALs for estimates of ΣE to levels comparable to those obtained375

penalizing canonical eigenvalues, again without reducing mean PRIALs for estimates of ΣG376

notably. For q=9 traits, there was an unexpected, substantial difference between penalties377

on covariance and correlation matrix and shrinking both genetic and residual correlations378

towards their phenotypic counterparts increased the PRIAL for Σ̂G by 2% (P 2
ρ vs. Pρ). In379

contrast, corresponding differences for q=5 were considerably smaller. It is not clear how380

much this was an effect of the dimension or due to differences in population values.381

Allowing for different tuning factors for parts of the penalty corresponding to genetic and382

residual effects increased the PRIAL for Σ̂G for q=5 from 72.9 to 73.7% for P ` 2
λ , from 70.0 to383

72.7% for P 2
Σ and from 72.2 to 74.3% for P 2

ρ , i.e. by less than 3%. Corresponding PRIALs384

for Σ̂E were 65.6% (P ` 2
λ ), 64.9% (P 2

Σ) and 62.7%, i.e. increased by more than 10% for P 2
Σ.385

While non-negligible, the gains for estimates of ΣG were deemed too small to off-set the386

dramatically increased computational requirements arising from the two-dimensional search387

for the optimal tuning factors needed, and not given any further consideration.388

Mean PRIAL values discussed so far conceal a considerable range and variation in the389

ranking of penalties for individual cases. This is illustrated in Figure 2, which shows in390

PRIAL for Σ̂G for q=9 traits with individual cases in declining order of that achieved using391

penalty P ` 2
λ . For strategy V∞, penalties on canonical eigenvalues assuming a common mean392

performed best when populations values for the λi were fairly similar, e.g. for R-I and393

M-I all population values were equal. For q=9 there was little difference in PRIALs for Σ̂G394

obtained between penalties assuming a Normal distribution on the logarithmic scale (P `
λ395

and P ` 2
λ ) and a Beta distribution with estimated scale parameters (P b

β ), though a tendency396

for P b
β to yield slightly higher values for cases where penalized estimation worked least397
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well was evident. Conversely, penalties derived assuming an Inverse Wishart matrix prior398

mostly yielded larger PRIALs for the other cases, in particular when penalizing the difference399

between genetic and phenotypic correlations. For q=5 trait, penalties Pρ and P 2
ρ performed400

best for 35% of the individual cases considered, mainly those for which PRIALs for Σ̂G were401

less than average, while P `
λ and P `

λ yielded the highest values for 37% of cases. For q=9 where402

population values were predominantly chosen to represent scenarios for which penalties on403

the λi worked least well, penalty P 2
ρ thus yielded the highest PRIAL for 80% of cases.404

4.2 Estimating tuning factors405

A crucial part of penalized estimation is the estimation of the appropriate tuning factor to be406

used. Mean PRIAL values for Σ̂G for different strategies to determine ψ̂ are summarized in407

Table 4 for selected penalties, q=5 traits and s=100 sires, together with the average proportion408

of replicates for which penalization increased rather than decreased the entropy loss in Σ̂G.409

Corresponding PRIAL values for all penalties for strategies V∞, CV3 and L5% are given in410

Table 3. Clearly, mean values well above 70% when utilizing the population values (V∞ or411

L1(ΣG)) present an overly optimistic view of the efficacy of penalized estimation. Considering412

only one additional sample for validation (strategy V1) introduced considerable sampling413

error and thus reduced PRIALs achieved by about 10%.414

Examining regularized estimation of covariance matrix, Rothman et al. (2009) reported that415

using strategy V1 yielded similar results to cross-validation. However, in our case, mean416

PRIAL values obtained using cross-validation to determine ψ̂ were consistently lower, i.e.417

suffered from additional noise introduced. Somewhat surprisingly, PRIALs achieved tended418

to decrease with the number of folds considered, K. This was accompanied by increasing419

variability of results for individual cases. Clearly, there was a trade-off between the sizes of420

the training and validation sets. One might expect that using a small training set (low K)421

would result in a ψ̂ which was somewhat too large as it pertained to the sample size of the422

subset. On the other hand, a larger validation set might favour more accurate estimation423

of ψ. Similarly, a larger number of replications or folds might off-set potential inabilities to424

ascertain optimal values for ψ due to the limited size of the validation set. However, results425

for CV5 and CV10 were consistently worse than for lower values of K.426

Inspection of the mean tuning factors did reveal a trend for ψ̂ to decline with increasing427

number of folds. For penalties P b
β , PΣ and Pρ means where substantially higher than those428
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obtained for strategy V∞, suggesting that lower PRIALs obtained using cross-validation429

were indeed due to over-penalization. For P `
λ and P ` 2

λ results were less consistent: for these430

penalties, estimates of ψ for cases with low coefficients of variation in the population canon-431

ical eigenvalues from strategy V∞ were very high. Using cross-validation, corresponding432

values tended to be substantially lower, so that overall means from strategies V∞ and CVK433

were similar. Using cross-validation also tended to reduce differences between penalties434

somewhat. Interestingly, as shown in Table 3, penalized estimation using penalties derived435

from the Beta distribution of order statistics appeared least affected by the noise introduced436

when estimating ψ. For strategy CV3 penalties P d
β and P e

β yielded the highest PRIAL in Σ̂G437

for 35% of the individual cases (q=5 and s=100), compared to 2% for strategy V∞.438

Difficulties in deriving the optimal ‘bending’ factor theoretically led Hayes and Hill (1981) to439

suggest a choice on the basis of the sample size. An alternative in a likelihood framework of440

estimation is to select the tuning factor so that the corresponding reduction in the unpenalized441

likelihood does not exceed a given limit. When carrying out a likelihood ratio test for442

the difference between estimates from different models, minus twice the difference in log443

likelihood is contrasted to a value of the χ2 distribution corresponding to the number of444

parameters tested and an error probability of γ. The smallest number of parameters which445

can be tested is p=1. Hence, choosing ψ as the largest value for which the resulting change in446

log L (θ) (sign ignored) does not exceed 1
2χ

2
γ for one degree of freedom will result in a change447

in estimates which is not statistically significant. While it may not result in the optimal448

amount of regularization, it is appealing as a strategy to select a mild degree of penalization449

to exploit at least some of the advantages of penalized estimation without having to justify450

significant changes in parameter estimates. In addition, computational requirements to451

determine such ψ are considerably less than for cross-validation.452

As shown in Table 3 and Table 4 employing such strategy yielded substantially improved453

estimates of ΣG, with PRIALs achieved consistently higher than for cross-validation. For a454

sample size of s = 100, an error probability of 5% or 10% appeared most appropriate. Mean455

estimates of ψ were markedly and consistently lower than for strategy V∞, indicating that456

this approach indeed resulted in under-penalization. This held especially for cases with457

similar population canonical eigenvalues (E-I , H-I , I-I , M-I and R-I ). As illustrated in458

Figure 2, choosing ψ in this way also blurred differences between penalties. In a number of459

cases, in particular for q=9 traits, PRIALs for Σ̂G from strategy L5% were higher than those460

from V∞, but lower than from L1(ΣG).461
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4.3 Effects of sample size462

The effect of sample size on the efficacy of regularized estimation is illustrated in Figure 3463

for q=5. Clearly, penalization was most advantageous for small samples, with mean PRIALs464

for Σ̂G decreasing substantially as the number of sire families increased. There were marked465

differences between penalties and strategies to determine ψ, especially in the rate of decline466

of PRIALs with increasing s. This was least for penalty P 2
ρ and, moreover, choosing tuning467

factors on the basis of the change in log L (θ) performed almost as well if knowledge of the468

population values could be exploited. In addition, P 2
ρ resulted in the highest PRIAL for both469

Σ̂G and Σ̂E for all sample sizes when using the change in likelihood to decide on the degree470

of penalization to be applied (strategy Lk%).471

As noted above, improvements in Σ̂G when using cross-validation to determine the tuning472

factor were substantially less than for the other strategies. This difference tended to increase473

with sample size. Whilst consistently performing worst for strategy V∞, penalties derived474

assuming the distribution of canonical eigenvalues resembled that of order statistics on the475

unit interval yielded the highest PRIAL in Σ̂G for strategy CV3, with values for P e
β almost476

2% higher than for P d
β for s=1000. It is not clear what this comparatively larger robustness477

against noise in estimates of ψ can be attributed to.478

The decline in PRIAL with sample size was clearly a function of the number of traits consid-479

ered, with reductions for q=9 markedly smaller. For instance, for P 2
ρ and strategy L5% the480

average PRIAL in Σ̂G declined from 69.4% for s=100 to 64.1% for s=400 and 60.2% for s=1000.481

Similarly, respective values for P ` 2
λ were 67.7%, 64.2% and 54.2%. This suggests that mild482

penalization is advantageous even for larger samples as the dimensions of the covariance483

matrices to be estimated increases.484

4.4 Bias485

As emphasized above, regularized estimation entails a trade-off between sampling variance486

and bias. Table 5 gives the mean relative bias in estimates of canonical eigenvalues for a487

sample size of s=100 sires and strategy V∞. Figure 4 further illustrates the relationship488

between estimates of λi and their true values for selected penalties and strategy V∞, with489

the solid line showing a one-to-one correspondence (unbiased estimates) and the dashed490

line representing the linear regression of estimates on population values. Patterns obtained491

when selecting the tuning factor based on the likelihood or using cross-validation were492
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very similar. As indicated by theory, unpenalized estimates of the largest values were biased493

upwards and those of the smallest values biased downwards. Whilst the mean was expected494

to be estimated unbiasedly, a small upwards bias in λ̄ – corresponding to a clustering of the495

smallest λ̂i at zero – was evident, reflecting the effects of constraints on the parameter space.496

Estimation placing a penalty on canonical eigenvalues tended to result in over-shrinkage,497

resulting in a downward bias of the largest and upward bias of the smallest values. This was498

the more pronounced the further the corresponding population values were spread apart.499

Similar results for shrinkage of the eigenvalues of a single matrix have been reported by500

Daniels and Kass (2001). While the relative bias in the smallest λ̂i was substantial, absolute501

changes tended to be small and penalization clustered estimates closer to the one-to-one line.502

Though PRIALs achieved were, by and large, comparable, penalties on matrix divergence503

clearly acted in a different manner to those on canonical eigenvalues. For penalty PΣ504

upwards bias in λ̂1 was of similar magnitude and individual estimates showed the same505

pattern of distribution (Figure 4) than for unpenalized estimation, with penalization pre-506

dominantly affecting the smallest values. This could be attributed to the fact that this507

penalty involved a component approximately proportional to the reciprocal of the λ̂i (see508

Section 2.2.2). Shrinking genetic correlations towards their phenotypic counterparts (Pρ)509

yielded the least relative bias in estimates of the leading canonical eigenvalues. Penalizing510

both genetic and environmental components tended to shrink the largest λ̂i more and the511

smallest λ̂i less (P `
λ vs. P ` 2

λ and Pρ vs. P 2
ρ ). Allowing for separate tuning factors for the512

two parts of the respective penalties increased the downwards relative bias in λ̂1 somewhat513

(to −10.9% for P ` 2
λ and −5.3 for P 2

ρ ) whilst increasing the corresponding PRIALs, again514

illustrating that more improvement in estimates can come at the price of more bias.515

It has to be stressed tough that bias in estimates of eigenvalues does not directly translate516

into bias in the corresponding covariance components or genetic parameters derived from517

them. As illustrated by various authors (e.g Ledoit and Wolf, 2004), eigenvalues of sample518

covariance matrices are systematically over-dispersed and biased, but the sample covariance519

matrix is an unbiased estimator. Standard, unpenalized REML estimates are biased, however,520

because estimates are constrained to the parameter space. This implies that for scenarios521

where no constraints are needed, no bias is notable. Mean estimates of heritabilities for522

individual scenarios for q=9 traits are shown in Figure 5. Not imposing a penalty, a slight bias523

for those with the highest and lowest population values is evident, arising from constrained524

estimation. The corresponding plot for a larger sample with s=1000 (not shown) exhibited525
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virtually no bias.526

Penalized estimation, however, yielded biased estimates of heritabilities, with a pattern of527

biases and differences between penalties analogous to those observed for the canonical eigen-528

values. For instance, for PΣ the smallest heritabilities were substantially biased upwards529

while estimates for the largest values were similar to those from unpenalized analyses.530

Penalties on the canonical eigenvalues resulted in marked underestimates of the highest531

heritabilities, with mean differences between estimates and population values for trait 1 of532

−0.130 for P c
β and −0.113 for P ` 2

λ , whilst corresponding values for PΣ and P 2
ρ were 0.009 and533

−0.054, respectively. Taking the average of absolute deviations across traits yielded values534

of 0.019 for Pρ and 0.025 for P 2
ρ , compared to 0.013 for unpenalized estimates, whilst mean535

absolute differences for the other penalties were about twice as high, ranging from 0.048 to536

0.054. Using a likelihood based strategy (L5%) to determine the tuning factor approximately537

halved the bias in the heritability for trait 1 and reduced the mean absolute bias to 0.018538

for P 2
ρ and 0.023 to 0.027 for the other penalties, except Pρ for which this value remained539

unchanged. Analogous differences between penalties were found for q=5 traits, but using540

strategy L5% rather than V∞ had little effect on the mean absolute bias due to penalization.541

The effects of penalized estimation on estimates of genetic correlations are illustrated in542

Figure 6 for case T-V I and a sample with s=100 sire families. Shown is a box-and-whisker543

plot of individual estimates across replicates, with correlations in ascending order of their544

population values, depicted by horizontal bars. Not surprisingly for such small sample,545

unpenalized estimates were subject to substantial sampling variation, and spread furthest546

for pairs of traits with the lowest heritabilities. Again, unpenalized estimates were clearly547

biased due to the effects of constraints on the parameter space, with mean deviations from the548

population values ranging from −0.504 (8, 9) to 0.035 (3, 8) and a mean, absolute bias across549

replicates of 0.064. Penalization dramatically reduced the spread of estimates, but increased550

bias to a range of −0.734 (8, 9) to 0.103 (4, 8), with a mean absolute value of 0.142. In all551

cases, genetic correlations were shrunk towards the corresponding phenotypic correlations552

(population values shown as dashed horizontal lines). In spite of the increase in bias,553

penalized estimation reduced the PRIAL in the estimate of the genetic correlation matrix by554

77.3%. The corresponding value for Σ̂G was less, 58.1% for strategy V∞ and 60.5% for L5%,555

i.e. this was a scenario for which penalization worked somewhat less well (c.f. Figure 2).556

Across all cases simulated, the mean absolute bias in estimates of genetic correlations for557

unpenalized estimates for s=100 was 0.046 for q=9 and 0.033 for q=5. Excluding Pλ, penalized558
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estimation using strategy V∞ to determine the tuning factor increased this to 0.082 (PΣ) to559

0.105 (P 2
ρ ) for q=9 and 0.085 (PΣ) to 0.101 (P `

λ ) for q=5. For strategy L5%, corresponding560

values ranged from 0.058 (PΣ) to 0.068 (P a
β ) and 0.099 (PΣ) to 0.109 (P a

β ). Thus penalized561

estimation increased the average bias in estimates of genetic correlation by a factor of two to562

three. Again, there was a tendency for the bias to be most pronounced for penalties imposed563

directly on the canonical eigenvalues.564

5 Discussion565

An extension of current, standard methodology to estimate genetic parameters in a mixed566

model framework has been outlined that has the scope to yield ‘better’ estimates, especially567

for multivariate analyses comprising more than just a few traits. This is achieved by pe-568

nalizing the likelihood, with the penalty a function of the parameters aimed at reducing569

sampling variation. A number of suitable penalties have been investigated with emphasis570

on those ‘borrowing strength’ from estimates of the corresponding phenotypic covariance571

or correlation matrices, which are typically estimated much more accurately than their ge-572

netic counterparts. All penalties presented have a Bayesian motivation, i.e. can be derived573

assuming certain prior distributions for covariance matrices or their eigenvalues. In contrast574

to ‘full’ Bayesian analyses, location or scale parameters for the priors are estimated from575

the data at hand, i.e. our penalized maximum likelihood procedure can be considered as576

analogous to an empirical Bayes approach.577

Simulation results have been presented demonstrating that substantial reductions in loss, i.e.578

the (average) difference between true and estimated covariance matrices, can be achieved.579

As expected, this comes at the price of increasing bias, over and above that introduced by580

constraining estimates to the parameter space in standard analyses. The magnitude and581

direction of the additional bias depend on the population parameters and penalty applied,582

but in general penalization caused estimates of the highest heritabilities to be reduced and583

those of the smallest heritabilities to be increased while estimates of genetic correlations were584

reduced in absolute value. With comparable (or better) reductions in loss to other penalties,585

Pρ and P 2
ρ which shrink the genetic towards the phenotypic correlation matrix appeared to586

result in least bias.587

As described by Meyer and Kirkpatrick (2010), penalized REML estimation for penalties on588

canonical eigenvalues is best implemented by reparameterising to the elements of Λ and T589
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(c.f. Section 2.2.1), i.e. the canonical decomposition. In contrast to implementations for stan-590

dard REML algorithms, which usually parameterize to the elements of the Cholesky factors591

of the covariance matrices to be estimated, this yields a parameterization in which deriva-592

tives of all covariance matrices with respect to all parameters are non-zero. Further, initial593

experience with this parameterization has been that it resulted in slower convergence rates594

than estimation of covariance matrices or of the corresponding Cholesky factors. Similar595

results for the parameterization of a single matrix to the elements of its eigen-decomposition596

have been reported by Pinheiro and Bates (1996). An additional disadvantage is that exten-597

sion to models with additional random effects and penalties on their covariance matrices is598

not straightforward. Estimation using the penalties on matrix divergence proposed, how-599

ever, is readily carried out using standard parameterizations, with calculation of derivatives600

of the penalty the only modification to existing REML algorithms required. Furthermore,601

penalties on additional covariance matrices can easily be imposed, provided appropriate602

tuning factors are available.603

Cross-validation is a widely used technique to estimate the tuning or shrinkage factor in604

regularization problems from the data at hand. For our application, however, it was found605

to be only moderately successful, with errors in estimating ψ limiting PRIALs achieved and606

increasing the proportion of replicates for which penalization was detrimental. These errors607

appeared especially important for larger samples, i.e. in small samples any degree of penal-608

ization is likely to have a substantial effect while over-penalization becomes more harmful609

as sample size increases. An added problem with cross-validation for data with a genetic610

family structure is that of representative sampling of data subsets. In our simulation setting,611

assigning whole sire families to individual folds was a natural choice and yielded higher612

PRIAL values than a random assignment. In practical data sets with arbitrary relationships613

and fixed effects, choices are less obvious and while procedures to optimize sampling exist614

(e.g Tillé, 2006), guidelines to good sampling strategies in a mixed model setting are scarce.615

Moreover, cross-validation is laborious, increasing the number of analyses required by orders616

of magnitude. A sequential search for the optimal tuning factor was used in our simulation617

study. A more efficient strategy would have been to use one of the many structured, one-618

dimensional optimization methods available, e.g. a quadratic approximation of the average619

likelihood from the validation sets. However, this relies on the ‘validation’ curves to be620

smooth, increasing monotonically to a maximum and then decreasing again. This was not621

always the case in the simulations presented – some jagged curves were encountered, in622
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particular for the smallest sample sizes. Presumably this was due likelihood surfaces which623

were very flat around the area of the maxima, resulting in inaccurate location of these points.624

Use of such techniques was thus disregarded here.625

Fortunately, choice of ψ̂ based on the decrease in the unpenalized likelihood from its max-626

imum at ψ = 0 can result in penalized estimates closely related to those which would be627

obtained if population values were known. As demonstrated, such strategies yielded av-628

erage reductions in loss for estimates of the genetic covariance matrix substantially higher629

than those estimating ψ by cross-validation, and values comparable to those achieved using630

knowledge of the population parameters for some penalties. Choosing the limit so that the631

change in likelihood was just not statistically significant appeared to be a sensible choice to632

select a mild degree of penalization. While it did not perform quite as well for individual633

cases where all population canonical eigenvalue were very similar, this is a constellation634

which is unlikely to be of practical relevance in quantitative genetic applications.635

Work so far has considered a balanced scenario, with all traits in a multivariate analysis636

measured for all individuals. Often, however, we have a substantial discrepancy between637

the number of observations available for different traits. For instance, we may have a638

number of traits recorded on a substantial number of individuals whilst records for other,639

hard to measure traits are available for a small subset only. In that case, it is necessary640

to penalize parts of the genetic covariance matrix corresponding to such grouping of traits641

differently. To achieve this, a possible extension of the penalties on the divergence between642

genetic and phenotypic matrices might involve assuming a Generalized Inverse Wishart643

prior distribution (e.g. Brown, 2006), similar to the approach taken, for instance, by Cantet644

(2010) to allow for different degrees of belief. Future work should consider the scope for645

such differential regularization.646

Even with today’s computational resources, there may be problems where an analysis con-647

sidering all traits of interest is not feasible, so that elements of the complete covariance matrix648

have to be obtained through a series of analyses of selected subsets of traits. This yields mul-649

tiple estimates of variance and some covariance components which need to be pooled whilst650

ensuring the resulting matrix is positive definite. Typically, this is done by considering one651

matrix at a time, e.g. genetic or residual, using some method as the iterative summation652

of expanded part matrices (Mäntysaari, 1999) or treating estimates from individual analy-653

ses as ‘pseudo-data’ (Thompson et al., 2005). Alternatively, a strategy comprising simple654

averaging combined with a regression of the eigenvalues of the resulting matrix towards655
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their mean to ensure the smallest value is greater than zero is frequently employed. The656

latter is commonly referred to as bending, though it differs from the original suggestion by657

Hayes and Hill (1981) as it involves a single matrix only. Results from this paper suggest that658

considering all matrices of interest simultaneously when combining estimates from analyses659

of subsets, together with some shrinkage towards the phenotypic covariance matrix may be660

advantageous.661

6 Conclusions662

Penalized maximum likelihood estimation provides the means to ‘make the most’ of limited663

and precious data and facilitates more stable estimation for multi-dimensional analyses even664

when samples are somewhat larger. We anticipate that it will become part of our everyday665

toolkit as truly multivariate estimation for quantitative genetic problems becomes routine.666

At the present state of knowledge, a mild penalty on the divergence of the genetic from667

the phenotypic correlation matrix, chosen on the basis of the change in likelihood from an668

unpenalized analysis, appears the most suitable option for practical applications.669
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Table 1: Population values for heritabilities (×100) for individual cases together with the
coefficient of variation (in %) amongst canonical eigenvalues for different correlation
scenarios

(a) 5 traits

A B C D E F G H I J K L

Heritability
1 40 50 60 70 90 70 80 90 20 30 50 60
2 40 45 50 55 50 70 30 30 20 25 20 10
3 40 40 40 40 30 40 30 10 20 20 15 10
4 40 35 30 25 20 10 30 10 20 15 10 10
5 40 30 20 10 10 10 30 10 20 10 5 10

Coefficient of variation
I 0 20 40 59 79 75 56 115 0 40 88 112
I I 115 116 118 122 134 124 127 168 148 151 164 175
I II 64 67 73 83 95 92 81 129 87 96 123 135
I V 76 79 86 95 112 101 101 145 98 108 137 150
V 70 70 74 82 96 93 83 124 81 81 103 120

(b) 9 traits

M N O P Q R S T U V

Heritability
1 40 60 90 75 70 20 35 50 60 80
2 40 55 60 70 70 20 30 50 50 40
3 40 50 50 60 70 20 25 20 10 10
4 40 45 50 50 40 20 20 15 10 10
5 40 40 30 40 40 20 20 15 10 10
6 40 35 30 30 40 20 20 10 10 10
7 40 30 20 20 10 20 15 10 10 10
8 40 25 20 10 10 20 10 5 10 5
9 40 20 10 5 10 20 5 5 10 5

Coefficient of variation
I 0 34 63 64 65 0 47 88 100 124
V I 73 74 85 85 83 97 102 113 113 131
V II 77 81 93 90 89 102 111 127 132 150
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Table 2: Population values for genetic (rG ij) and environmental (rE ij) correlations between
traits i and j together with values for phenotypic variances (σ2

i ) for different scenarios

Scenario rG ij rE ij σ2
i

I 0.0 0.0 1.0
I I 0.8 0.0 1.5i−1

I II 0.6|i− j| 0.5 + (−0.4)|i− j| 3.0, 2.0, 1.0, 2.0, 3.0
I V 0.02 i + (−0.8)|i− j| 0.5 + (−0.4)|i− j| as I II
V 0.5 + (−1)i 0.05 j 0.2 + (−1) j 0.1 i as I II
V I 0.7|i− j| 0.2 + (−1) j 0.05 i 2.0, 1.0, 3.0, 2.0, 1.0, 2.0, 3.0, 1.0, 2.0
V II 0.02 i + (−0.8)|i− j| 0.5 + (−0.2)|i− j| as V I

27



K.M. June 8, 2011 Penalized estimates of genetic covariances

Table 3: Mean percentage reduction in average loss (PRIAL) in estimates of covariance
matrices (ΣG genetic, ΣE residual and ΣP phenotypic) for different penalties (see text) and
three strategies to determine the tuning factor (Data for 100 sires).

Pλ P `
λ P ` 2

λ P a
β P b

β P c
β P d

β P e
β PΣ P 2

Σ Pρ P 2
ρ

5 traits
ΣG V∞ 35.8 71.3 72.9 66.7 71.4 66.1 68.1 67.9 70.6 70.0 72.0 72.2

CV3 23.1 55.9 60.7 59.2 58.1 58.3 61.2 61.1 54.9 52.9 54.4 56.9
L5% 41.3 68.3 70.2 67.6 69.5 70.0 69.8 69.3 64.1 66.7 70.5 71.5

ΣE V∞ 57.9 43.4 61.6 59.3 60.9 59.8 59.7 59.7 13.3 54.2 37.3 60.0
CV3 14.1 26.7 44.3 38.7 36.0 32.5 38.0 39.6 10.7 43.0 22.8 40.9
L5% 43.6 35.0 55.9 54.2 54.1 51.6 53.9 54.0 7.2 51.4 33.2 55.7

ΣP V∞ 1.1 1.2 1.3 1.3 1.2 1.1 1.2 1.2 1.2 1.7 2.2 2.4
CV3 -0.4 0.4 0.5 0.3 0.1 0.0 0.2 0.3 0.2 0.1 0.4 0.8
L5% -0.7 0.7 0.8 0.5 0.5 0.2 0.4 0.5 0.3 1.0 1.0 1.2

9 traits
ΣG V∞ 48.4 64.8 68.4 65.3 68.9 69.2 66.9 66.7 64.0 62.8 71.3 73.3

L5% 24.1 67.5 67.7 65.4 66.5 66.0 66.3 66.4 68.0 67.7 69.5 69.4
ΣE V∞ 62.9 60.5 68.8 67.8 67.3 66.1 68.0 68.3 10.4 61.1 57.9 70.2

L5% 63.0 16.4 59.3 60.9 62.6 63.3 61.6 61.7 9.9 47.4 17.2 56.3
ΣP V∞ 1.3 1.9 1.9 2.0 1.8 1.7 2.0 2.0 1.2 1.7 2.5 3.0

L5% 1.2 0.5 1.1 1.2 1.3 1.3 1.2 1.2 0.6 0.7 1.1 1.2
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Table 4: Mean percentage reduction in average loss (PRIAL) in estimates of the genetic
covariance matrix together with average proportion (in %) of replicates for which
penalisation increased the loss in estimates, for different penalties (see text) and strategies
to determine the tuning factor (Data for 5 traits and 100 sires).

Population values Crossvalidation Likelihood

L1(ΣG) V∞ V1 CV2 CV3 CV5 CV10 L20% L10% L5% L2.5%

PRIAL
P `
λ 75.6 71.3 60.6 55.8 55.9 50.4 44.4 68.8 69.6 68.3 66.3

P ` 2
λ 76.1 72.9 63.7 61.8 60.7 58.1 55.3 69.3 70.7 70.2 69.0

P b
β 74.9 71.4 62.9 59.8 58.1 53.9 48.2 68.2 69.6 69.5 68.6

PΣ 75.2 70.6 60.6 56.7 54.9 52.7 50.0 68.7 68.0 64.1 61.0
Pρ 75.9 72.0 62.9 58.1 54.4 51.6 46.1 70.2 71.2 70.5 68.9

Increased loss
P `
λ 0.0 7.3 8.7 15.3 14.6 14.6 14.7 8.7 10.5 12.0 13.6

P ` 2
λ 0.0 6.5 7.5 13.4 13.0 13.2 13.2 7.0 8.5 10.0 11.4

P b
β 0.0 6.4 7.5 14.1 13.6 14.0 14.1 7.0 8.4 9.8 11.1

PΣ 0.0 4.6 8.9 15.6 15.4 15.5 15.4 10.3 12.8 15.6 17.9
Pρ 0.0 4.0 7.1 10.5 9.9 10.2 10.4 6.6 8.0 9.2 10.4
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Table 5: Mean relative bias (in %) in estimates of the canonical eigenvalues and their mean
(λ̄) for different penalties (strategy V∞; 100 sires)

λi None Pλ P `
λ P ` 2

λ P a
β P b

β P c
β P d

β PΣ P 2
Σ Pρ P 2

ρ

5 traits
λ̄ 2.3 -5.4 6.6 2.1 3.4 0.9 -1.2 1.0 11.2 10.9 4.7 2.3
1 9.5 -12.9 -3.7 -9.6 -8.9 -11.2 -12.9 -11.5 8.1 3.2 1.3 -3.0
2 26.5 16.1 16.3 16.1 24.7 19.5 19.5 19.5 24.9 26.3 16.2 15.5
4 -19.4 9.1 57.7 48.3 38.8 41.3 31.0 39.4 39.1 47.0 37.3 37.1
5 -78.8 -38.1 101.3 81.6 36.1 44.7 26.6 52.2 75.3 88.6 57.2 56.7
av.a 30.2 19.6 41.6 36.4 28.3 29.4 23.4 30.3 34.4 38.8 26.6 26.5

9 traits
λ̄ 4.4 -9.9 9.5 3.2 11.8 2.1 0.8 7.2 19.7 18.2 6.3 2.5
1 22.4 -22.4 -3.8 -13.7 -6.9 -16.8 -18.5 -12.7 21.6 8.8 2.9 -4.2
2 16.6 -17.5 -6.8 -10.0 0.5 -10.9 -11.4 -6.2 16.1 11.0 -0.7 -3.1
5 15.3 23.3 33.6 29.4 47.4 36.4 35.3 39.7 33.2 39.2 23.7 23.6
8 -85.6 -16.4 139.4 111.7 80.8 86.2 77.8 104.4 87.5 110.1 86.5 82.2
9 -97.9 -35.0 270.1 217.5 133.2 147.7 134.0 190.5 184.1 217.0 133.4 131.7
av. 39.9 16.6 68.4 57.3 48.8 48.4 45.1 56.9 54.0 61.9 40.0 39.1

aAverage of all q absolute values
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Figure 1: Probability density function for various Beta distributions: (a) α=β: — ·— α=2,
——– α=3, — — — α=4 and — - — α=5 (b) α=0.6 + z, β=1.2 + z: - - - - z=0 and — ·—

z=1, (c) order statistics for 5 variables (z=0): - - - - first, — ·— second, ——– third,
— — — fourth and — - — fifth (d) as (c) for z=1
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Figure 2: Percentage reduction in average loss (PRIAL) in estimates of the genetic covariance
matrix for individual cases comprising 9 traits and different penalties (H PΣ, � P 2

ρ , N P b
β and

• P ` 2
λ ; see text) , determining tuning factors on the basis of population values (V∞) and by

limiting the change in likelihood (L5%)
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Figure 3: Mean percentage reduction in average loss (PRIAL) in estimates of the genetic
covariance matrix (5 traits) for different sample sizes, penalties (see text) and strategies
to determine the tuning factor (• using population values (V∞), � limiting the change in
likelihood (L5%) and H using cross-validation (CV3))
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Figure 4: Mean estimates of canonical eigenvalues for individual cases (5 traits, 100 sires) for
different penalties (see text) using population values (strategy V∞) to determine the tuning
factor ( • first, � second, H third, � fourth and N fifth eigenvalue)
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Figure 5: Mean estimates of heritabilities for individual cases (9 traits, 100 sires) for different
penalties (see text) using population values (strategy V∞) to determine the tuning factor ( •
trait 1, � trait 2, H trait 3 to 7, � trait 8 and N trait 9)
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Figure 6: Distribution of estimates of genetic correlations between traits i and j (i– j) across
replicates for case T-V I (s=100 sires, strategy V∞); horizontal bars show population values
for genetic ( ——– ) and phenotypic ( — — — ) correlations
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