[1]    Amestoy P.R., Davis T.A., Duff I.S. An approximate minimum degree ordering algorithm. SIAM J. Matr. Anal. Appl. 17 (1996) 886–905.

[2]    Boyd S., Vandenberghe L. Convex Optimization. Cambridge University Press (2004).

[3]    Dennis J.E., Schnabel R.B. Numerical methods for Unconstrained Optimization and Nonlinear Equations. SIAM Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1996).

[4]    Erisman A.M., Tinney W.F. On computing certain elements of the inverse of a sparse matrix. Commun. ACM 18 (1975) 177–179. ISSN 0001-0782. doi: 10.1145/360680.360704.

[5]    Eskow E., Schnabel R.B. Algorithm 695: Software for a new modified Cholesky factorization. ACM Trans. Math. Software 17 (1991) 306–312.

[6]    Fernando R.L., Grossman M. Genetic evaluation with autosomal and X-chromosomal inheritance. Theor. Appl. Genet. 80 (1990) 75–80. doi: 10.1007/BF00224018.

[7]    Ferris M., Lucidi S., Roma M. Nonmonotone curvilinear line search methods for unconstrained optimization. Comput. Optim. Applic. 6 (1996) 117–136.

[8]    Forsgren A., Gill P.E., Murray W. Computing modified Newton directions using a partial Cholesky factorization. SIAM J. Sci. Statist. Comp. 16 (1995) 139–150.

[9]    Grippo L., Lampariello F., Lucidi S. A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23 (1986) 707–716. ISSN 0036-1429. doi: 10.1137/0723046.

[10]    Ihaka R., Gentleman R. R: A language for data analysis and graphics. J. Comp. Graph. Stat. 5 (1996) 299–314.

[11]    Karypis G., Kumar V. MeTis A software package for partioning unstructured graphs, partitioning meshes, and computing fill-in reducing ordering of sparse matrices Version 4.0. Department of Computer Science, University of Minnesota, Minneapolis, MN 55455 (1998). 44 pp.

[12]    Koivula M., Negussie E., Mäntysaari E.A. Genetic parameters for test-day somatic cell count at different lactation stages of Finnish dairy cattle. Livest. Prod. Sci. 90 (2004) 145–157.

[13]    Liu J.W.H. Modification of the minimum degree algorithm by multiple elimination. ACM Trans. Math. Soft. 11 (1985) 141–153.

[14]    Mäntysaari E.A. Derivation of multiple trait reduced random regression (RR) model for the first lactation test day records of milk, protein and fat. In: 50th Annual Meeting. Europ. Ass. Anim. Prod. (1999). Mimeo., 8pp.

[15]    Meuwissen T.H.E., Luo Z. Computing inbreeding coefficients in large populations. Genet. Select. Evol. 24 (1992) 305–313.

[16]    Meyer K. DfReml — a set of programs to estimate variance components under an individual animal model. In: Proceedings Animal Model Workshop, vol. 71 Supplement 2 of J. Dairy Sci. Edmonton, Canada, June 25–26, 1988 (1988), pp. 33–34.

[17]    Meyer K. DfReml version 3.0. CD-ROM of the Sixth World Congress on Genetics Applied to Livestock Production (1998).

[18]    Meyer K. Ordering strategies to reduce computational requirements in variance component estimation. Proc. Ass. Advan. Anim. Breed. Genet. 16 (2005) 282–285.

[19]    Meyer K. Random regression analyses using B–splines to model growth of Australian Angus cattle. Genet. Select. Evol. 37 (2005) 473–500. doi: 10.1051/gse:2005012.

[20]    Meyer K., Kirkpatrick M. Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices. Genet. Select. Evol. 37 (2005) 1–30. doi: 10.1051/gse:2004034.

[21]    Meyer K., Kirkpatrick M. Better estimates of genetic covariance matrices by ‘bending’ using penalized maximum likelihood. Genetics 185 (2010) 1097–1110. doi: 10.1534/genetics.109.113381.

[22]    Meyer K., Kirkpatrick M., Gianola D. Penalized maximum likelihood estimates of genetic covariance matrices with shrinkage towards phenotypic dispersion. Proc. Ass. Advan. Anim. Breed. Genet. 19 (2011) 87–90.

[23]    Meyer K., Smith S.P. Restricted maximum likelihood estimation for animal models using derivatives of the likelihood. Genet. Select. Evol. 28 (1996) 23–49. doi: 10.1051/gse:19960102.

[24]    Meyer K., Tier B. "SNP Snappy": A strategy for fast genome wide association studies fitting a full mixed model. Genetics 00 (2011) 000 (published on–line before print October 20, 2011). doi: 10.1534/genetics.111.134841.

[25]    Nelder J.A., Mead R. A simplex method for function minimization. Computer J. 7 (1965) 308–313.

[26]    Nocedahl J., Wright S.J. Numerical Optimization. Springer Series in Operations Research. Springer Verlag, New York, Berlin Heidelberg (1999). ISBN 0-38798793-2.

[27]    Powell M.J.D. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Computer J. 7 (1965) 155–162.

[28]    Quaas R.L. Computing the diagonal elements of a large numerator relationship matrix. Biometrics 32 (1976) 949–953.

[29]    Schnabel R.B., Estrow E. A new modified Cholesky factorization. SIAM J. Sci. Statist. Comp. 11 (1990) 1136–1158.

[30]    Schnabel R.B., Estrow E. A revised modified Cholesky factorization algorithm. SIAM J. Opt. 9 (1999) 1135–1149.

[31]    Tier B. Computing inbreeding coefficients quickly. Genet. Select. Evol. 22 (1990) 419–425.

[32]    Wilson A.J., Reale D., Clements M.N., Morrissey M.B., Postma E., Walling C.A., Kruuk L.E.B., Nussey D.H. An ecologist’s guide to the animal model. Journal of Animal Ecology 79 (2010) 13–26. doi: 10.1111/j.1365-2656.2009.01639.x.